【摘 要】
:
传统储层含油性勘测方法利用地震波穿过地层时产生的相关地震属性和地质钻井资料结合传统地球物理方法进行综合研判,但该类勘测方法往往存在研判成本高且对专家先验知识依赖性强的问题。针对该问题,以江苏油田苏北盆地的地震资料为基础,并结合含油样本的稀疏性和随机性,提出了一种基于多粒度时序结构表示的异常检测算法,直接利用叠后地震道数据进行预测。该算法首先对于单个地震道数据提取多粒度时序结构并形成独立特征表示;其
【机 构】
:
南京大学计算机科学与技术系,中国石油化工股份有限公司江苏油田分公司物探技术研究院,南京天技通信技术实业有限公司
论文部分内容阅读
传统储层含油性勘测方法利用地震波穿过地层时产生的相关地震属性和地质钻井资料结合传统地球物理方法进行综合研判,但该类勘测方法往往存在研判成本高且对专家先验知识依赖性强的问题。针对该问题,以江苏油田苏北盆地的地震资料为基础,并结合含油样本的稀疏性和随机性,提出了一种基于多粒度时序结构表示的异常检测算法,直接利用叠后地震道数据进行预测。该算法首先对于单个地震道数据提取多粒度时序结构并形成独立特征表示;其次,在提取多个粒度时序结构表示的基础上进行特征融合,以形成对地震道数据的融合表示;最后,通过对融合后的特
其他文献
多目标回归(MTR)是一种针对单个样本同时具有多个连续型输出的回归问题。现有的多目标回归算法都基于同一个特征空间学习回归模型,而忽略了各输出目标本身的特殊性质。针对这一问题,提出基于径向基函数的多目标回归特征构建算法。首先,将各目标的输出作为额外的特征对各输出目标进行聚类,根据聚类中心在原始特征空间构成了目标特定特征空间的基;然后,通过径向基函数将原始特征空间映射到目标特定特征空间,构造目标特定的
深度矩阵分解采用深层非线性映射,从而突破了矩阵分解中双线性关系影响推荐系统性能的瓶颈,但它没有考虑用户对未评分项目的偏好,且对于稀疏性较高的大规模数据其推荐性能不具有优势,为此提出一种融合矩阵补全与深度矩阵分解的推荐算法。首先通过矩阵补全模型将原始评分矩阵中的未知元素进行填补,然后依据补全后的矩阵,利用深度学习模型分别构建用户和项目潜在向量。最后,在MovieLens和SUSHI数据集上进行测试,
在影响力最大化问题中,针对启发式方法精度不足和贪婪方法时间过载的问题,提出一种基于多属性决策方法的影响力最大化算法。首先,从社会网络节点的影响传播、节点之间的影响重叠和节点的信任度角度选取节点的重要性评价指标。然后,建立基于熵权TOPSIS的社会网络节点重要性评价模型,通过模型选择影响范围最广、与当前种子集的重叠最小且信任度最高的节点。最后,构建算法,并通过实验验证算法的性能。实验结果表明,与传统
由于协同过滤推荐算法依赖用户的数据,因而存在很大的隐私泄露风险。差分隐私保护技术可提供严格的隐私保护效果,但目前大多数基于差分隐私的推荐算法没有考虑隐式反馈数据,针对该问题,提出了一种新的基于差分隐私保护的协同过滤推荐算法。首先对隐式反馈矩阵进行矩阵分解,得到用户和物品的隐式特征向量;然后把得到的隐式特征向量融合到显式反馈模型求解中,通过在模型求解过程中加入均值扰动和梯度扰动,使算法满足ε-差分隐
针对机场巴士运行过程影响因素复杂、难以预测运行时间的问题,建立了一种基于子空间辨识算法的机场巴士运行时间预测模型。首先根据运行过程中所产生的多源大数据,考虑不同时段的乘坐人数、发车间隔、道路拥挤度等因素,建立机场巴士运行过程状态空间模型;然后提取适合描述机场巴士运行过程的特征变量作为模型的输入输出,通过子空间辨识方法对模型进行求解;最后以首都机场巴士的一条实际运营路线作为案例进行仿真分析。计算结果
引入自适应升温策略或使用蒙特卡罗策略的模拟退火算法在复杂TSP求解时分别表现出收敛缓慢和全局最优逼近能力有限的问题;而现有的混沌优化算法由于logistic映射的缺陷,削弱了其跳出局部最优的能力。故设计一种融合型算法框架,在框架中嵌入分片Lorenz混沌映射系统,加强混沌算法对邻域解的搜索均匀度;引入了贪婪策略构造逼近全局最优解的初始解,使算法具有跃迁到全局最优解邻域的能力;此外设计了振荡退火互补
兴趣点(POI)推荐可以帮助用户发现其没有访问过但可能感兴趣的地点,是重要的基于位置的服务之一。时间在POI推荐中是一个重要因素,而现有POI推荐模型并没有较好地考虑时间因素,因此通过考虑时间因素来提出融入时间的POI协同推荐(TUCF)算法,从而提高POI推荐的效果。首先,分析基于位置的社交网络(LBSN)的用户签到数据,以探索用户签到的时间关系;然后,利用时间关系对用户签到数据进行平滑处理,以
针对卷积操作目标跟踪算法(ECO-HC)在遮挡、背景等干扰问题导致跟踪精度下降的问题,提出了一种自适应特征融合的卷积相关滤波算法,将CN与HOG特征进行加权融合,通过计算各自的响应来确定各自特征在下一帧的权重,将特征各自的优势充分发挥出来。此外,针对目标跟踪失败问题,提出利用形变相似多样性原理,构建目标重定位模块,当出现遮挡、快速移动等复杂情况造成跟踪的可靠性降低时,综合考虑目标响应得分、空间权重
针对高光谱和Li DAR成像优势,通过构建三维深度胶囊网络(3D-deep capsule network,3D-DCN)探索了这两种遥感数据源在城市地物分类上的应用。该网络通过使用两层3D-CNN结构实现融合后数据的非线性特征映射,然后紧跟胶囊网络生成代表特征的矢量并实现卷积、封装和分类;针对胶囊网络层间的非线性激活函数提出一种称为e-squash的非线性激活函数用于特征学习。在城市数据集上的分
以往对影响力最大化问题的研究大多是基于静态图进行优化研究,但在现实中,网络数据量随着时间不断增加,系统不可能实时获取到整个网络中节点之间的连接情况。在传统Max G探测模型的基础上,采用固定邻域规模和节点邻域层级相结合的方式计算节点影响力大小,提出了新的动态网络探测算法RAS-MaxG (regular area scale-MaxG),解决了传统探测算法由于采用度来衡量节点影响力值所导致的节点之