论文部分内容阅读
本文提出一种新颖的神经网络模型--线性内插神经网络用于雷达目标一维距离像识别,它可避开提取不变特征的难点,利用目标一维距离像特征随姿态变化的信息来提高目标识别性能,实验结果表明,采用LINN很好地解决了在大的廨范围内识别目标时所存在的计算量与识别率的矛盾,提高了雷达对任决任意姿态目标的识别性能。