论文部分内容阅读
针对用于数据流频繁项集挖掘的现有方法存在引入过多次频繁项集以及时空性能与输出精度较低的问题,利用Chebyshev不等式,构造了项集频度周期采样的概率误差边界,给出了动态检测项集支持度变化方法。提出了一种基于周期采样的数据流频繁项集挖掘算法FI-PS,该算法通过跟踪项集支持度变化确定项集支持度的稳定性,并以此作为调整窗口大小以及采样周期的依据,从而以一个较大的概率保证项集支持度误差有上界。理论分析及实验证明该算法有效,在保证挖掘结果准确度相对较好的条件下,可获得较优抽行性能。