论文部分内容阅读
本文研究了一类抛物型Monge-Ampère型方程的Cauchy-Neumann问题.通过构造辅助函数,利用函数在极大值点的性质及柯西不等式等方法对方程的解进行估计,得到了方程解的全局二阶梯度估计.接着利用抛物方程的一般理论,进一步得到在光滑条件下,解的长时间存在性,推广了抛物型Monge-Ampère方程的结果.