论文部分内容阅读
针对现有人脸年龄数据库样本数量少、各年龄段分布不均匀的问题,提出了一种基于分类与回归混合模型的人脸年龄估计方法。该方法主要包含两个方面:特征学习和估计模式。在特征学习方面,利用已有的深度卷积神经网络(CNN),先在粗糙年龄标注数据集上预训练,再在现有的精确年龄标注数据库上微调,分别得到一个年龄段判别模型和两个年龄估计模型;在估计模式方面,该方法采用由粗到细的策略:首先,将人脸分入青少年、中年、老年和两个重叠区域这五个年龄段;然后,对于青少年和老年采用分类模型估计,对于中年采用回归模型估计,对于重叠区