论文部分内容阅读
印度数学家J·V·Chaudhari和M·N·Deshpande在1996年2月发现了完全平方数的一种奇妙性质:当正整数k=956~968时,k2均为六位数,把它的前三位数与后三位数相加,得到的和也是完全平方数(例如由9672=935 089得935+89=1 024=322),并且这些完全平方数的算术平方根恰好是正整数43~31.[1]美国数学家Owen Thomas在1996年9月也发现了这样的完全平方数:当正整数k=9 859~9 900时,k2均为八位数,把它的前四位数与后四位数相
Indian mathematicians J.V. Chaudhari and M.N.N. Deshpande discovered in February 1996 a wonderful property of the perfect square number: when the positive integer k = 956-968, k2 is a six-digit number, and its The sum of the first three digits and the last three digits yields a sum of squares (for example, 935 + 89 = 1024 = 322 from 9672 = 935 089) and the square root of the arithmetic of these perfect squares is exactly a positive integer 43 - 31. [1] Owen Thomas, the American mathematician, also found the perfect square number in September 1996: k2 is an eight-digit number when the positive integer k = 9 859-9 900, and the first four digits With the last four digits