A method for extracting human gait series from accelerometer signals based on the ensemble empirical

来源 :Chinese Physics B | 被引量 : 0次 | 上传用户:panxiongbin
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
In this paper,the ensemble empirical mode decomposition(EEMD) is applied to analyse accelerometer signals collected during normal human walking.First,the self-adaptive feature of EEMD is utilised to decompose the accelerometer signals,thus sifting out several intrinsic mode functions(IMFs) at disparate scales.Then,gait series can be extracted through peak detection from the eigen IMF that best represents gait rhythmicity.Compared with the method based on the empirical mode decomposition(EMD),the EEMD-based method has the following advantages:it remarkably improves the detection rate of peak values hidden in the original accelerometer signal,even when the signal is severely contaminated by the intermittent noises;this method effectively prevents the phenomenon of mode mixing found in the process of EMD.And a reasonable selection of parameters for the stop-filtering criteria can improve the calculation speed of the EEMD-based method.Meanwhile,the endpoint effect can be suppressed by using the auto regressive and moving average model to extend a short-time series in dual directions.The results suggest that EEMD is a powerful tool for extraction of gait rhythmicity and it also provides valuable clues for extracting eigen rhythm of other physiological signals. In this paper, the ensemble empirical mode decomposition (EEMD) is applied to analyze accelerometer signals collected during normal human walking. First, the self-adaptive feature of EEMD is utilized to decompose the accelerometer signals, thus sifting out several intrinsic mode functions (IMFs ) at disparate scales. Shen, gait series can be extracted through peak detection from the eigen IMF that best represents gait rhythmicity. Compared with the method based on the empirical mode decomposition (EMD), the EEMD-based method has the following advantages: it remarkably improves the detection rate of peak values ​​hidden in the original accelerometer signal, even when the signal is severely contaminated by the intermittent noises; this method effectively prevents the phenomenon of mode mixing found in the process of EMD. And a reasonable selection of parameters for the stop-filtering criteria can improve the calculation speed of the EEMD-based method. Meanwhile, the endpoint effect can be suppressed by usin g the auto regressive and moving average model to extend a short-time series in dual directions. The results suggest that EEMD is a for tool for extraction of gait rhythmicity and it also provides valuable clues for extracting eigen rhythm of other physiological signals.
其他文献
档案管理是以实体档案、信息档案为前提的服务工作,能够保证有效信息的完整性、真实性.对于医院门诊科室而言,病历档案既可为医师诊疗提供便利,还可做好患者医疗信息的记录、
本文对肝硬化的药物治疗进行了探讨,比较了甲氨喋呤(MTX)加熊脱氧胆酸(UDCA)和单用UDCA用于治疗原发性胆汁性肝硬化(PBC)的效果。
目的 了解某市区非煤矿井职业卫生现状,分析非煤矿井采用机械作业后职业危害变化情况,为非煤矿井职业健康安全提供数据支撑.方法 通过现场采样检验和现场测定职业病危害因素
经颅多普勒(TCD)临床应用的适应症一直在不断的扩展,而各机构间的操作规程和报告质量却各不相同。一个国际专家小组根据文献分析和广泛的个人经验,开始制作关于TCD操作、图像
会议
Merrill P Spencer和John M Reid应用Hagen-Poiseville法则,连续波原理和脑血管阻力来描述关于流速、流量和残余管腔大小之间关系的理论模型。这个模型被描绘成曲线图即众所
会议
随着社会的不断进步,科学技术水平的提高,人们之间的交流方式呈现出多样化。展览会展示设计便是一项随着社会水平提高,人们审美能力提高的过程中发展起来的朝阳产业。这种高
人们对微栓子的认识正在并已经发生了变化,它反映了医学技术的发展和进步。本实验结合兔脑栓塞模型微栓子检测的研究,探讨TCD检测微栓子的可行性、栓子的负荷量与血管阻塞、
会议
经颅多普勒超声(TCD)可以在脑动脉血流中检测到微栓子信号(MES),通过分析MES在频谱和声窗中的参数,比较来源于颅内动脉狭窄部位(栓子起源部位)和来源于颈动脉狭窄或机械性心
目的:本研究旨在比较第6版和第7版国际抗癌联盟-美国癌症联合委员会(Union for International Cancer Control-American Joint Committeeon Cancer,UICC-AJCC)TNM分期系统在
胸廓出口综合征(TOS)系以多种原因所致的胸腔出口处的狭窄,压迫臂丛神经、锁骨下动脉及静脉引起的颈肩臂手部麻痛乏力、肌肉萎缩及上肢缺血为特征的临床症候群。由于被嵌压的
会议