【摘 要】
:
Cancer phototheranostics involving optical imaging-guided photodynamic therapy (PDT) and photothermal therapy (PTT) is a localized noninvasive approach in treating cancer.Mitochondria-targeted near-infrared (NIR) cyanines are excellent therapeutic photose
【机 构】
:
Engineering Research Center of Molecular & Neuroimaging,Ministry of Education,School of Life Science
论文部分内容阅读
Cancer phototheranostics involving optical imaging-guided photodynamic therapy (PDT) and photothermal therapy (PTT) is a localized noninvasive approach in treating cancer.Mitochondria-targeted near-infrared (NIR) cyanines are excellent therapeutic photosensitizers of cancer.However,most mitochondria-targeted cyanines exist in the form of hydrophobic structures,which in vivo may cause cyanine aggregation during blood circulation,resulting in poor biocompatibility and limited therapeutic efficacy.Therefore,we developed a trade-off strategy by encapsulating mitochondria-targeted cyanines into liposomal bilayers (CyBI7-LPs),which balanced hydrophilicity that favored blood circulation and hydrophobicity that enhanced mitochondria tumor targeting.Moreover,CyBI7-LPs greatly minimized photobleaching of cyanine as self-generated reactive oxygen species (ROS) could rapidly escape from the liposomal bilayer,affording enhanced PTT/PDT efficacy.Bioorthogonal-mediated targeting strategy was further employed to improve uptake of tumor cells by modifying the liposomal surface to generate CyBI7-LPB.The CyBI7-LPB probe produced a tumor-to-background ratio (TBR) of approximately 6.4 at 24 HPI.Guiding by highly sensitive imaging resulted in excellent anti-tumor therapy outcomes using CyBI7-LPB due to the enhanced photothermal and photodynamic effects.This proposed liposomal nanoplatform exhibited a simple and robust approach as an imaging-guided synergistic anti-tumor therapeutic strategy.
其他文献
Herein,we report the fabrication of Fe3O4@TiO2 nanosheet/Ag/g-C3N4 (Fe3O4@ns-TiO2/Ag/g-C3N4) composite photocatalysts with well-designed hierarchical yolk-shell structure.To endow the composites with fascinating features,multiple functional components are
In this study,we investigated the in vivo behaviors of chiral cobalt oxide nanoparticles (Co3O4 NPs) stabilized with D-or L-cysteine(denoted D-or L-NPs,respectively),as representative chiral metal oxide NPs.Chiral Co3O4 NPs exerted no observable cytotoxic
Multifunctionality has become a mainstream trend in the development of smart clothing and flexible wearable devices.Nevertheless,it remains a grand challenge to realize multiple functions,such as sensing,actuating and information displaying,in one single
In the pursuit of heterogeneous catalysts with high reactivity,metal organic framework (MOF) nanomaterials have received tremendous attentions.However,many MOF catalysts especially Fe-based MOFs need to be utilized immediately after synthesis or being act
Developing anode catalysts of substantially enhanced activity for hydrogen oxidation reaction (HOR) and anti-CO poisoning performance is of great importance for the application of proton exchange membrane fuel cells (PEMFCs).Herein,we report Pd cluster in
The oxidation of hydrocarbons to produce high value-added compounds (ketones or alcohols) using oxygen in air as the only oxidant is an efficient synthetic strategy from both environmental and economic views.Herein,we successfully synthesized cobalt singl
Boron nitride nanosheets (BNNSs) have gained significant attraction in energy and environment fields because of their two-dimensional (2D) nature,large band gap and high thermal/mechanical performance.However,the current low production efficiency of high-
首先介绍了高速飞行器设计所面临的静稳定裕度、航向操纵性、三通道耦合、安全边界等问题,进一步梳理了高速飞行器的失控成因,包括飞行环境、飞行姿态、控制耦合、惯性耦合、动力学耦合等因素,在此基础上,回顾了一系列适用于飞行器设计的典型抗失控判据,如横航向稳定性参数、动态航向稳定性参数、横/航向操纵偏离参数、Weissman组合判据、横向稳定性特征参数等.这些参数或判据不仅可以在设计初期预测气动布局的好坏及其对操稳特性的影响,帮助工程师改进气动布局以使飞行器获得最佳的性能,还可用来预测飞行器在当前气动布局下所需要的
Enhancement of supercapacitors (SCs) with high-energy density and high-power density is still a great challenge.In this paper,a facile strategy for in situ anchoring of Co3O4 particles on N doped carbon cloth (pCoNCC) is reported.Due to the interaction of
面对称飞行器具有强耦合、弱阻尼的特点,为实现其横航向模态的高效控制,对控制策略效能及高效控制策略选择判据进行了研究.通过建立稳定轴系下横航向耦合动力学模型,得到了模态特征简化表达式;分析了有效的模态控制策略,并推导了各控制策略的效能公式;通过对各控制策略效能的对比分析得到了耦合特征下的高效模态控制策略选择判据;最后通过根轨迹分析、模态特性评估与6自由度仿真进行验证,结果表明理论公式与分析仿真结果一致.高效模态控制策略选择判据能够准确表征不同控制策略的效能关系,可用于指导强耦合面对称飞行器横航向模态控制方案