论文部分内容阅读
为了精确评估个体心理负荷状态,需要获取目标脑电信号数据,脑电信号是评估脑力负荷变化的重要指标。机器学习和神经网络越来越多地用于脑力负荷分类。利用脑电信号特征可在时域和频域中提取突出信息。因此提出一个结合支持向量机(SVM)与超限学习机(ELM)的混合型脑力负荷分类框架。其中支持向量机作为成员分类器,可在高维EEG特征中查找隐藏信息;超限学习机用于融合成员分类器的输出。将ELM-SVM模型与经典脑力负荷分类器进行比较,得出该模型训练精度准确率为1,且测试精度提升0.1个百分点。