论文部分内容阅读
采用聚类分析方法对交通流时间序列进行分析可以发现典型的交通流变化模式。通常 可采用欧式距离及K均值算法进行时间序列聚类,但经分析发现单凭此方法还难以实现不同变化趋 势的交通流时间序列的有效分离。针对此问题,提出了将动态时间弯曲及灰色关联度引入交通流时 间序列相似性度量,且结合层次化聚类方法对交通流时间序列进一步分离的方法。通过实验研究,发 现基于灰色关联度的层次化聚类方法能较好地实现交通流时间序列的进一步有效分离。