论文部分内容阅读
针对复杂优化问题下粒子群优化算法收敛速度慢和易早熟收敛的缺陷,提出一种结合粒子群优化算法与天牛须搜索算法的新型优化算法——自适应变异的天牛群优化算法。首先,通过引入个体粒子对周围环境的感知机制,构造一种基于自适应须长与步长的天牛群优化算法,丰富个体在迭代过程中可参考的信息;然后,引入多维扰动群体最优位置的变异策略,实现减少陷入局部最优解的功能;最后,根据群体聚集程度调整变异概率,并随着迭代的进行逐步降低变异概率以使天牛群在迭代后期稳定在局部精细搜索。为验证算法的性能,将新算法与其他7个对比算法针对7