论文部分内容阅读
针对现有静态网络社区发现算法的失真和动态网络社区发现算法时间复杂度较高的问题,本文提出了一种动态网络中的重叠社区发现算法。在网络中,边介数最大的边或分割介数最大的节点是网络中的关键边或点,即联系最不紧密的边或节点,因此,该算法利用去除最大边介数的边和分裂最大分割介数的节点的方法,并将网络社区的动态变化和重叠性考虑在内进行社区发现。最后利用模块度对社区发现进行控制,使发现的社区结构更加合理。
In order to solve the problem of distorting the existing static network community discovery algorithm and the high time complexity of the dynamic network community discovery algorithm, this paper proposes an overlapping community discovery algorithm in the dynamic network. In the network, the node with the largest edge index or the largest segment index is the key edge or point in the network, that is, the edge or node with the least contact. Therefore, this algorithm uses the edge and split The method of dividing nodes by maximum, and taking the dynamic changes and overlaps of online communities into account for community discovery. Finally, the use of modularity to control the community discovery, the community structure found more reasonable.