论文部分内容阅读
本文从单分散和多分散高聚物的浓度效应模型理论出发,推导出了第二维利系数(A_2)同分子量((?)_w)和GPC流出体积(V_(es))与浓度(C)依赖关系和初始斜率(dV_(es)/dC)_(c→0)=K_s间的关系式,基于该式我们建议了一种从GPC浓度效应来确定第二维利系数的新方法。它只需利用GPC仪测定高聚物的分子量、分子量分布和K_s=(dV_(es)/dC)_(c→0)及粘度法测定其Huggins参量(K_H)。该法能适用于较宽的分子量范围(10~4—10~6)的高聚物。我们研究了多种不同分子量的单分散和多分散聚苯乙烯的浓度效应,并按上述方法测定了九种不同分子量的聚苯乙烯在良溶剂和Theta(θ)溶剂中的第二维利系数,结果表明按上述方法测得的A_2值均能同光散射的实测值较好地一致,亦证明了该法能适用于较宽分子量范围内(10~4—10~6)的高聚物A_2值的测定。
Based on the model of concentration effect of monodisperse and polydisperse polymers, the relationship between the second dimension (A 2) and the molecular weight ((?) _w) and GPC efflux volume (V es) and concentration ) Dependence and initial slope (dV_ (es) / dC) _ (c → 0) = K_s, we propose a new method to determine the second Weigh coefficient from the effect of GPC concentration. It only needs to determine the Huggins parameter (K_H) of the polymer by measuring the molecular weight, molecular weight distribution and K_s = (dV_ (es) / dC) _ (c → 0) The method can be applied to a wide range of molecular weight (10 ~ 4-10 ~ 6) of the polymer. We investigated the concentration effects of monodisperse and polydisperse polystyrene of many different molecular weights and determined the second Weigh coefficient of nine different molecular weight polystyrenes in good solvents and Theta (θ) solvents as described above The results show that the A_2 values measured by the above method are in good agreement with the measured values of light scattering and also prove that the method can be applied to polymers with a wide range of molecular weights (10 ~ 4-10 ~ 6) Determination of A_2 value.