【摘 要】
:
二维形状分类识别是计算机视觉和模式识别等领域的一个重要问题,在目标识别、图像理解等应用中发挥着重要作用。针对二维形状分类识别研究,主要从特征描述、形状分类识别、形状标准数据库三个方面综述了该方向近年来最新的研究工作。综合分析了二维形状特征表示方法,主要包括基于轮廓的、基于区域的、基于骨架的以及基于多特征融合的方法,并简要评述;介绍并分析了二维形状分类识别方法,主要包括传统机器学习分类器、集成分类器
【机 构】
:
沈阳建筑大学机械工程学院,高档石材数控加工装备与技术国家地方联合工程实验室
【基金项目】
:
辽宁省自然科学基金(20180551124)。
论文部分内容阅读
二维形状分类识别是计算机视觉和模式识别等领域的一个重要问题,在目标识别、图像理解等应用中发挥着重要作用。针对二维形状分类识别研究,主要从特征描述、形状分类识别、形状标准数据库三个方面综述了该方向近年来最新的研究工作。综合分析了二维形状特征表示方法,主要包括基于轮廓的、基于区域的、基于骨架的以及基于多特征融合的方法,并简要评述;介绍并分析了二维形状分类识别方法,主要包括传统机器学习分类器、集成分类器、深度学习方法等;概述了二维形状识别中常用的标准数据库;展望了二维形状识别分类研究的发展趋势。
其他文献
针对由于风速变化因素复杂导致的风速预测模型准确率低的问题,提出一种多特征嵌入的Seq2Seq(序列到序列)风速预测模型。以Seq2Seq为基础,将影响风速的多种因素数据进行多特征嵌入编码,实现对未来若干个小时风速的预测。通过准确率、预测评分和平均绝对误差等指标的实验评价,验证Seq2Seq模型相比当前最优模型达到了更好的预测稳定性,风速多特征嵌入编码方法的加入显著提高了Seq2Seq模型的预测准确性。实验结果验证了该模型的有效性。
针对采用松弛-量化策略的深度哈希方法面临的二值码离散优化的难题,提出一种端到端的基于成对标签的哈希方法来学习更具有判别力的哈希码,通过优化损失函数来解决离散优化丢失信息的问题。引入锚点哈希码概念,以汉明空间中的锚点作为监督信息训练AlexNet网络,将表示图片的二值码拟合至各锚点附近,使用优化后的损失函数计算分类误差和锚点误差,使哈希函数生成具有强判别力的哈希码。在CIFOR-10数据集和Imag
为获得国家间双边关系预测的因果关系模型,提出一种融合事件抽取(event extraction,EE)、时序贡献度(time contributions,TCs)与动态贝叶斯网络(dynamic Bayesian networks,DBN)的国家双边关系预测方法。基于事件抽取技术对爬取的新闻数据抽取事件句、事件类型等要素。按月划分新闻数据,提取特征词,根据频次等计算每月的时序贡献度。基于专家制定的事件分值表与事件抽取结果构建国家双边关系数据集,将其输入融合时序贡献度的DBN模型训练结构和参数。以南海争端为
针对工业应用中的指针式仪表自动检测识别任务,为解决指针式仪表检测过程中所涉及到的小目标检测性能不足与检测速度慢的问题,提出一种改进版本的YOLOv3检测算法。使用网络爬虫及数据增强扩充数据集,通过Kmeans++初始化的Mini Batch Kmeans方法对数据集聚类得到先验框;使用轻量级网络MobileNet框架与设计的适应样本的损失函数,得到改进模型。理论分析和实验结果表明,在指针式仪表检测
针对目前基于聚类方法的交通流预测模型,在聚类时,未考虑到不同因素对交通流影响程度不同的问题,引入因果分析方法来量化各因素的重要程度,同时提出一种预测框架,基于因果分析的套索回归(LASSO)和极限学习机(ELM)组合预测模型。采用占用率和车速两种因素,引入符号转移熵分别对各因素与交通流进行因果分析;根据分析结果为每种因素加权,利用K-Means算法对数据进行聚类;通过LASSO捕捉线性关系,ELM学习非线性关系,为每一类交通流建立特有的预测模型。通过对洛杉矶地区的实验,验证了组合模型对预测精度的提升具有很
飞机油耗区间估计是航空公司系统规划和运行决策的重要依据,针对传统油耗估计中对实际业载和航程差异分散特征以及运行环境和驾驶员操作习惯等因素变化的不确定性未能充分考虑而影响整体区间估计结果的问题,提出一种基于数据偏离性和密度分布欠采样US-D-DD(under-sampling based on data deviation and density distribution)的飞机油耗区间估计方法。对于同一机型的全部航程,在考虑数据的偏离性和密度分布的同时,运用相关向量机(RVM)建立飞机油耗区间估计模型,获
为提供更优质的使用Event-B形式化方法建模混合系统的工具,根据混合系统的时序约束建模方法,其能够很好刻画混合系统建模中的时间相关性质并且支持精化和组合,提出基于它的自动筛选、精化和组合的方法。开发对应的自动精化和组合的工具链,工具链包含模型检测、自动精化和组合、模型证明等一系列功能并拥有用户友好的界面。给出一个使用工具的案例介绍和应用此工具。
聚类分析是一种常见的分析方法,谱聚类作为聚类分析的一支,因其不受样本形状约束等特点备受瞩目。为及时掌握当前谱聚类算法研究动态,通过对比分析众多谱聚类优化算法,从半监督学习、二阶段聚类算法选择、算法执行效率优化等三个角度,将谱聚类优化算法分为三类,并对每类算法的优化思想进行综述。介绍经典多路谱聚类与基本理论,并分析相似矩阵及其特征值、特征向量选取原因及影响,旨在明确特征矩阵的重要性与优化的必要性。基于算法改进策略差异,梳理并总结每类算法的改进思想、研究现状及优缺点。在UCI数据集与手写体数据集上,针对谱聚类
匿名通信网络正成为犯罪分子的隐匿空间,给网络监管带来了严峻的挑战。对匿名网络流量的有效识别是对其有效监管的先决条件。针对Tor匿名流量,提出了一种有效的流量识别模型——Histogram-XGBoost模型。Histogram-XGBoost模型在流粒度上计算获取流量的时间相关性特征,并对这些特征进行类离散化预处理,提升特征的鲁棒性,最后结合集成学习的思想通过XGBoost在较小的特征维度下实现对Tor匿名流量的识别。实验结果表明,与已有的识别方法相比,提出的识别模型在准确率与稳定性上有较大的提升。
大数据时代,数据爆炸式的增长,数据获取变得更容易的同时数据缺失现象也更加普遍。数据的缺失极大地降低了数据的实用性。数据缺失问题的处理成为大数据处理的热点研究课题。介绍了数据缺失问题的研究意义和国内外研究现状。系统地分析了造成数据缺失的原因,对数据缺失问题进行了分类。对近年来国内外缺失数据处理方法进行了综述,总结了各自优缺点、适用范围、效果评价指标。重点阐述了回归填充、聚类填充等填充方法。对缺失数据处理方法领域进行了总结与展望。