Influence of Sodium Carbonate Amount on Crystalline Phase and Structure Stability for Doping Nickel

来源 :武汉理工大学学报(材料科学版)(英文版) | 被引量 : 0次 | 上传用户:zsj1502
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Alpha nickel hydroxide has better performances than commercial beta nickel hydroxide. However, the main defect is that α-phase is difficult to synthesize and easily transformed to β-phase Ni(OH)2 upon aging in a strong alkaline solution. In this study, the Al-Co, Al-Yb, Yb-Co and Al-Yb-Co multiple doping was used respectively. By controlling the amount of sodium carbonate, the α-Ni(OH)2 was prepared by ultrasonic-assisted precipitation. And the influence of sodium carbonate on the crystalline phase and structure stability for alpha nickel hydroxide was studied. The results demonstrate that, with increasing amount, the bi-phase nickel hydroxide transforms to pure alpha nickel hydroxide gradually, and the structure stability is also improved. When the amount of sodium carbonate is 2 g, the sample still keeps α-Ni(OH)2 after being aged for 30 days, for Al-Yb-Co- Ni(OH)2. And when the amount is less than 2 g, the phase transformations exist in the samples with different extents. These results demonstrated that the amount of sodium carbonate is a critical factor to maintain the structural stability of α-Ni(OH)2.
其他文献
Nickel oxalate micro-spheres with core-shell structure of solid core and radiate shell were synthesized by precipitation method in a mixed water solution,with oxalic acid and nickel acetate as raw materials,through dropping ammonium hydroxide to adjust th
The starch/polyvinyl alcohol (PVA)/ microfibrillated cellulose (MFC) composite films were prepared using solution casting method after adding MFC into starch/PVA blend matrix. The effects of MFC content on the mechanical properties of starch/PVA composite
The brine-freeze-thaw durability (defined as the durability under freeze-thaw cycles in Qinghai salt lake brine) of concrete (ordinary Portland cement concrete (OPC), high performance concrete (HPC-a), high performance concrete with steel fiber (HPC-b), a
In order to investigate the synergistic effect of re-dispersible powder-ethylene-vinyl acetate copolymer (EVA) and polypropylene fiber on the crack resistance of concrete under thermal fatigue loading, the compressive strength, ultimate tensile strength,
Bagasse fibers were modified using NaOH, KH550, and NaOH/KH550, respectively, and used as reinforcement to prepare bagasse/starch/PVA composite. A combination of Fourier-transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) was used to invest
Castor oil-based cationic waterborne polyurethane (CWPU) was synthesized by pre-polymer process using castor oil (CO), poly(adipic acid-1,4-succinate diol) (PBA), isophorone diisocyanate (IPDI), and N-methyldiethanolamine (MDEA). The influences of the con
Novel visible light magnetically separable graphene-based BiOBr composite photocatalysts were prepared for the first time. The structures, morphologies and optical properties were characterized by field emission scanning electron microscopy, transmission
The addition of high Ti (>0.1%) in microalloyed bainitic high strength steel was designed, and the precipitation morphology of steels with different Ti, Nb, and V contents was studied by utilizing transmission electron microscopy (TEM). Based on the class
We prepared the nano-inorganic phase-change “alloy” materials through the modification of Na2SO4·10H2O using Na2HPO4·12H2O and GO nano-nucleating agent, and further investigated their thermophysical properties such as melting/solidification temperatures a
Void-free β-SiC films were deposited on Si(001) substrates by laser chemical vapor deposition using hexamethyldisilane (HMDS) as the precursor. The effect of the time of introducing HMDS, i e, the substrate temperature when HMDS introduced (Tin), on the p