论文部分内容阅读
译码作为编码理论中的一个重要过程,算法的优劣直接决定信息的处理速度。叙述了如何将Grbner基方法用在译码过程的计算中以提高译码效率。首先,介绍了Grbner基和译码过程中的相关理论。然后,分析了纠错码的译码过程并导出伴随式方程组,即多项式方程组。因为变元字典序的Grbner基具有消元的性质,故译码时使用字典序的Grbner基求解得到的方程组。利用了Grbner基求解非线性代数方程组的高效性。该方法具有很强的通用性。
Decoding as an important process in coding theory, the merits of the algorithm directly determines the processing speed of information. Describes how to use Grbner basis method in the calculation of decoding process to improve the decoding efficiency. First of all, we introduce the theory of Grbner basis and decoding process. Then, the decoding process of error correction code is analyzed and the equation system of adjoint equations is derived, that is, the polynomial equations. Because the Grbner basis of the argument lexical order has the property of elimination, the system of equations obtained by solving the lexicon Grbner basis is used in decoding. Using Grbner Basis to Solve the Efficiency of Nonlinear Algebraic Equations. The method has strong versatility.