论文部分内容阅读
汽轮机故障诊断的一大难题是故障样本的缺乏,由于支持向量机针对小样本情况能取得很好的效果,为此,提出基于主成分分析与支持向量机的故障诊断方法,首先采用主成分分析方法对汽轮机故障数据进行故障特征提取,将特征向量作为支持向量分类器的输入,按照汽轮机的故障类型训练分类函数。对于支持向量机参数的选取,提出了基于错分样本数的蚁群优化算法。在小样本情况下对汽轮发电机组故障诊断进行了仿真研究。结果表明,应用该算法可以正确且有效地诊断多类汽轮机故障。