论文部分内容阅读
This letter reports the application of the scanning heating laser source technique to detect microcracks that may be undetected by conventional methods.In the proposed approach,we monitor changes in the transmitted surface acoustic waves(SAWs) as a heating source is scanned over the crack.The experimental system for microcrack detection by a scanning heating laser source is obtained by exploiting the strong dependence of the transmission efficiency of acoustic pulses on the state of the contacts,whether open or closed,between the crack faces.Microcracks can be detected successfully by confirming the heating position at the point of maximal improvement of the transmission efficiency of the SAWs.
This letter reports the application of the scanning heating laser source technique to detect microcracks that may be undetected by conventional methods. The proposed approach, we monitor changes in the transmitted surface acoustic waves (SAWs) as a heating source is scanned over the crack. The experimental system for microcrack detection by a scanning heating laser source is obtained by exploiting the strong dependence of the transmission efficiency of acoustic pulses on the state of the contacts, whether open or closed, between the crack faces.Microcracks can be detected successfully confirmed by confirming the heating position at the point of maximal improvement of the transmission efficiency of the SAWs.