论文部分内容阅读
本文模拟了0.25μm SOI NMOS的总剂量效应,I-V特性曲线随总剂量变化趋势与实测曲线一致。在此基础上探讨了器件在不同掺杂浓度、硅膜厚度、埋氧层厚度以及栅氧层厚度等工艺条件下的总剂量效应,分析了一定剂量条件下各项工艺引起器件性能变化的原因。结果表明,源漏高掺杂、薄硅膜、适当厚度的埋氧层和较薄的栅氧层均有利于提高SOI NMOS的抗总剂量效应的能力。这为器件提高抗总剂量效应设计和加固提供了一定的理论依据。
This article simulates the total dose effect of 0.25μm SOI NMOS, I-V characteristic curve with the total dose trends consistent with the measured curve. On this basis, the total dose effects of the devices under different process conditions, including doping concentration, silicon film thickness, buried oxide thickness and gate oxide thickness, were investigated. . The results show that the highly doped source and drain, the thin silicon film, the appropriate thickness of the buried oxide layer and the thinner gate oxide layer are all conducive to improving the total dose resistance of the SOI NMOS. This provides a theoretical basis for the design and reinforcement of the device against total dose effects.