Reduced formation of peroxide and radical species stabilises iron-based hybrid catalysts in polymer

来源 :能源化学 | 被引量 : 0次 | 上传用户:wanglaow
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The incorporation of Pt into an iron-nitrogen-carbon (FeNC) catalyst for the oxygen reduction reaction(ORR) was recently shown to enhance catalyst stability without Pt directly contributing to the ORR activ-ity.However,the mechanistic origin of this stabilisation remained obscure.It is established herein with rotating ring disc experiments that the side product,H2O2,which is known to damage FeNC catalysts,is suppressed by the presence of Pt.The formation of reactive oxygen species is additionally inhibited,inde-pendent of intrinsic H2O2 formation,as determined by electron paramagnetic resonance.Transmission electron microscopy identifies an oxidised Fe-rich layer covering the Pt particles,thus explaining the inactivity of the latter towards the ORR.These insights develop understanding of FeNC degradation mechanisms during ORR catalysis,and crucially establish the required properties of a precious metal free protective catalyst to improve FeNC stability in acidic media.
其他文献
The exploration of low bandgap perovskite material to approach Shockley-Queisser limit of photovoltaic device is of great significance,but it is still challenging.During the past few years,tin-lead (Sn-Pb) mixed perovskites with low bandgaps have been rap
The state-of-the-art industry based on carbon-intensive energy causes major concerns on energy and environmental sustainability.Carbon neutrality is now a worldwide consensus and an impera-tive task.Efficient capture and/or conversion of carbon dioxide(CO
期刊
Enabling highly reversible sodium (Na) metal anodes in a polymer electrolyte (PE) system is critical for realizing next-generation batteries with lower cost,higher energy,and improved safety.However,the uneven Na deposition and high Na/PE interphase resis
Design and synthesis of noble-metal-free bifunctional catalysts for efficient and robust electrochemical water splitting are of significant importance in developing clean and renewable energy sources for sus-tainable energy consumption.Herein,a simple thr
High-temperature thermal oxidation of an Fe foil produces a high-quality,crystalline hematite nanoflake suitable as a photoanode for the photoelectrochemical (PEC) water oxidation.Physical pre-polishing of the foil surface has a profound effect in the for
Lithium nickel oxide (LiNiO2) cathode materials are featured with high capacity and low cost for rechargeable lithium-ion batteries but suffer from severe interface and structure instability.Here we report that rationally designed LiNiO2 via concentration
Ongoing efforts to develop single-atom catalysts (SACs) for the oxygen reduction reaction (ORR) typically focus on SACs with cationic metal centers,while SACs with anionic metal centers (anionic SACs) have been generally neglected.However,anionic SACs may
Slurry-phase hydrogenation technology is the frontier topic in the efficient conversion of heavy oils into light fractions around the world.Developing highly active dispersed MoS2 catalysts is the major obstacle to realize the industrial application of up
Poly(ethylene oxide) (PEO) is a classic matrix model for solid polymer electrolyte which can not only dis-sociate lithium-ions (Li+),but also can conduct Li+ through segmental motion in long-range.However,the crystal aggregation state of PEO restricts the
The high energy demand we currently face in society and the subsequent large consumption of fossil fuels cause its depletion and increase the pollution levels.The quest for the production of clean energy from renewable and sustainable sources remains open