论文部分内容阅读
全光铯原子磁力仪是采用光学的方法实现微弱磁场检测,激光频率稳定性直接影响磁力仪的灵敏度。分析了二向色性原子蒸气激光频率锁定(Dichroic atomic vapor laser lock DAVLL)技术用于稳定激光器频率的原理,及其在全光原子磁力仪中的应用优势,发现通常的二能级原子模型不适用于分析铯原子D2线的稳频。实验测量了不同磁场下铯原子D2线基态Fg=4和Fg=3跃迁的DAVLL光谱,发现16mT是实现DAVLL稳频的最佳磁场;在此磁场附近,基态Fg=4跃迁鉴频曲线零点相对于Fg=4→Fe=5跃迁会产生6MHz/mT的线性频移,基态Fg=3跃迁鉴频曲线零点相对于Fg=3→Fe=4线会产生-9MHz/mT的线性频移。
Full light cesium atomic magnetometer is the use of optical methods to achieve weak magnetic field detection, laser frequency stability directly affect the sensitivity of the magnetometer. The principle of dichroic atomic vapor laser lock (DAVLL) technique used to stabilize the laser frequency and its application in all-optical atomic magnetometer are analyzed. It is found that the usual two-level atomic model For analysis of cesium D2 line frequency stabilization. We experimentally measured the DAVLL spectra of Fg = 4 and Fg = 3 transitions of the ground state of D2 cesium atoms under different magnetic fields and found that 16mT is the optimal magnetic field for DAVLL frequency stabilization. Near this magnetic field, the zero point of the ground state Fg = 4 transition frequency- The transition of Fg = 4 → Fe = 5 will produce a linear frequency shift of 6MHz / mT. The zero of Fg = 3 transition in the ground state will produce a linear frequency shift of -9MHz / mT relative to Fg = 3 → Fe = 4.