论文部分内容阅读
针对目前大量工业现场使用的氧量分析仪成本昂贵、维护费用高且易损坏等问题,在几种常见方法对比讨论的基础上,提出了利用基于统计分析和神经网络技术的NNPLS方法建立烟气含氧量软测量模型的方法。该方法综合了PLS和神经网络技术的优点,能够利用过程历史数据辨识对象模型;利用现场实际数据对该方法进行了仿真验证,并将仿真结果与传统的线性PLSR方法和直接神经网络建模方法作了比较,结果显示NNPLS方法所建立的软测量模型具有更强的泛化能力。文中还对静态模型向动态模型进行了扩展。