论文部分内容阅读
提出一种非常有效且具有良好鲁棒性的人体目标跟踪算法。由于传统的卡尔曼滤波不能很好地解决非线性、非高斯问题的跟踪,为此提出了一种新型的粒子滤波器跟踪算法。该算法采用加权的粒子集模型表示状态的分布,用迭代运算跟踪状态的变化,从而有效地解决了数据处理的量大和模型出现高维的问题。实验结果证明,该算法对固定摄像机单一背景下人体目标跟踪是快速且有效的。该算法可广泛应用于航空器位置的跟踪、噪声环境通信信号的估计、人体或车辆的跟踪。