论文部分内容阅读
提出了一种神经网络与粒子群算法相结合的锡磷青铜水平连铸工艺参数优化方法。以水平连铸中7个主要工艺参数为优化对象,带坯成材率为优化目标,进行正交试验并以试验数据作为样本,利用神经网络建立优化参数与优化目标的非线性映射模型。利用粒子群算法对建立的模型进行优化,获得最优铸造工艺参数。选用RBF(径向基函数)神经网络,网络学习采用减聚类算法和最小二乘法,采用惯性权重动态改变策略对粒子群算法进行改进。实际生产证明,经优化的铸造工艺参数使带坯的成材率从56%提高到71%。