论文部分内容阅读
目的:测定红芪多糖3(HPS-3)中4个组分的绝对分子量,相对分子质量分布,均方根旋转半径(Rg),多分散系数(Mw/Mn)等分子特征参数,以均方根旋转半径(Rg)对重均分子量(Mw)作图,计算4个组分在溶液状态的构象。方法:采用凝胶渗透色谱-多角度激光散射(GPC-MALLS)联用技术,流动相为含0.02%NaN3的0.1 mol.L-1NaNO3溶液,Ultrahydro-gelTM1000,500色谱柱串联。结果:HPS-3的4个组分中,HPS-3-C的Mw最大(1.986×105g.mol-1);其次为HPS-3-B(1.113×105 g.mol-1)和HPS-3-D(8.457×104 g.mol-1);HPS-3-A的Mw最小(1.223×104 g.mol-1),而Rg最大(55.5 nm)。HPS-3-D相对分子质量分布范围最广,Mw/Mn 2.543。在流动相中,HPS-3-A为球型构象,HPS-3-C为无规则线团构象,HPS-3-B和HPS-3-D则均为高枝化度结构。结论:为进一步研究HPS-3中4个组分分子特征与其生物活性的关系提供必要依据。
OBJECTIVE: To determine the molecular weight distribution, molecular weight distribution, root mean square radius of gyration (Rg) and polydispersity (Mw / Mn) of four components in Radix Hedysari 3 (HPS-3) The square root radius of gyration (Rg) was plotted against the weight average molecular weight (Mw) and the conformations of the four components in solution were calculated. Methods: Gel permeation chromatography (GPC-MAL) coupled with multi-angle laser light scattering (GPC-MALLS) was used. The mobile phase consisted of 0.1 mol.L-1NaNO3 solution containing 0.02% NaN3. Results: Among the four components of HPS-3, HPS-3-C had the highest Mw (1.986 × 105g.mol-1), followed by HPS-3-B (1.113 × 105g.mol- 3-D (8.457 × 104 g · mol-1); HPS-3-A had the smallest Mw (1.223 × 104 g · mol-1) and the largest Rg (55.5 nm). HPS-3-D has the widest molecular weight distribution with Mw / Mn 2.543. In the mobile phase, HPS-3-A is a spherical conformation, HPS-3-C is a random coil group conformation, and HPS-3-B and HPS-3-D are highly branched structures. Conclusion: This study provides the necessary basis for further study on the relationship between molecular characteristics of 4 components in HPS-3 and their biological activity.