论文部分内容阅读
摘要:在现代高层建筑中,剪力墙受到了越来越多的运用。因为连剪力墙的不仅使用功能优越先进,并且结构宽敞、简洁,有很大的改造灵活性,使用户能够自行改造,也使使用面积得到进一步的加大。本文主要介绍有关高层建筑剪力墙的结构类型、特点和施工过程中的质量问题的改进以及其结构优化设计的分析探讨。
关键词:高层建筑;剪力墙结构;分析
1、高层建筑剪力墙的特点以及分类
剪力墙根据是不是开洞以及开洞的大小可以分为以下几个类型。
1.1实体墙
所谓实体墙就是指没有开洞或者开洞的面积小于整个墙体面积的15%。其受力的特点是就像一个悬臂墙。它的弯矩图既没有突变,也没有反弯点,整个墙体的变形是以弯曲型为主。
1.2整体的小开口剪力墙
这主要是指开孔的面积虽然大于整个墙体面积的15%,但是仍然属于小面积开孔的墙体,其受力的特点就是弯矩图在连接梁的地方发生突变,在高度上没有反弯点,或者是仅仅在个别的楼层才有反弯点。
1.3双脂肢或者多肢剪力墙
所谓的双肢或者多肢剪力墙主要是说开洞比较大的或者洞口成列布置的墙体。它的受力特点是和整体的小开口的剪力墙相类似的。
1.4壁式框架
壁式框架是指洞口的尺寸相对比较大,而连接梁线的刚度和墙肢线的刚度比较接近的墙体。其受力特点是弯矩图在楼层的地方放生突变,而且在大多数的楼层中都会出现反弯点。
2、剪力墙结构设计的基本原则
2.1要严格遵守肢长和厚度的比值,进行构件设计。由于剪力墙的高度和宽度尺寸都有着很大的不同,因此,要据几何特征和受力形态来计算肢长和厚度的比值,据结果实施按柱设计或者是按双向受压构件设计。
2.2既要满足刚度要求又要具有很强的变形性能和延性。剪力墙结构中,墙体会承受多方面的力度,既有水平剪力和弯矩,还承担竖向压力;在轴力、弯矩、剪力的复合状态下工作,因此,设计时候一般都是设计为延性弯曲型。既可以增加抗震性能,又可以防治脆性剪切造成破坏。
2.3剪力墙在设计时候要尽量避免平面外搭接,实在避免不了时应按规范采取相应措施,以保证剪力墙平面外安全。
2.4墙的设计计算是考虑水平和竖向作用下进行结构整体分析,求得内力后按偏压或偏拉进行正截面承载力和斜截面受剪承载力验算。当受较大集中荷载作用时再增加对局部受压承载力验算。
3、高层建筑剪力墙结构优化设计
3.1剪力墙的具体结构的设置
多高层的那些建筑是要有很好的空间的工作能力的,剪力墙的布置是需要双向的,从而组成空间的结构,尤其是抗震的防御区,更要免除单向的剪力墙布置的结构,最好是保证两个方向的刚度接近,剪力墙平面上分布要力求均匀,使其刚度中心和建筑物中心尽量接近。以减小扭转效应。必要时通过改变墙肢长度和连梁高度調整刚心位置。剪力墙抗侧刚度大,结构自振周期短,所受水平地震作用较大,对结构不利,可充分利用剪力墙的抗侧刚度及承载力均较大的能力,尽量减薄纵横墙体的厚度,或采用“主次结构”加大墙体的间距,减少墙体数量,以降低结构的抗侧移刚度,减轻结构重量,减少墙体的水平地震剪力和弯矩。剪力墙的特点是平面内刚度及承载力大,而平面外刚度及承载力都相对很小。当剪力墙与平面外方向的梁连接时,会造成墙肢平面外弯矩。当梁高大于2倍墙厚时,梁端弯矩可能会影响平面外的安全,所以要使用适当的办法,以确保安全,如果楼面的截面小,可以把结构设计成铰接或半刚接,这样可以适当的减少墙肢平面外变矩。
3.2底部加强部位的设计
在剪力墙设计时,一般高层剪力墙结构,底部加强部位的高度可取嵌固部位以上墙肢总高度的1/ 8和底部两层高度二者的较大值; 底部带转换层的高层建筑结构,其剪力墙底部加强部位的高度可取框支层加上框支层以上2层的高度及墙肢总高度的1/ 8二者的较大值。当将地下室顶板视作嵌固部位, 在地震作用下的屈服部位将发生在地上楼层,同时将影响到地下 1 层,此时地下1层的抗震等级不能降低,加强部位的范围应向下延伸到地下1层,并应按规范要求在地下1层设置约束边缘构件。
3.3连梁的设计布置
连梁的跨高以及截面的尺寸会受到各种条件的影响和限制,因此,在剪力墙的连梁设计中,会因为设计的不合理,容易出现连梁承载力或者是连梁的界面难以达到相关规定的标准,从而既会影响到工程的施工,又会影响到工程的质量。因此,要综合多种情况,进行设计和处理。
3.3.1对连梁的刚度进行折减
连梁由于跨高比较小与之相连的墙肢刚度大等原因,在水平力作用下的内力往往很大,连梁屈服时表现为梁端出现裂缝,刚度减小,内力重分布。因此,在开始进行结构整体计算时,就需对连梁刚度进行折减。高规中解释说高层建筑结构构件均采用弹性刚度参与整体分析,但抗震设计的剪力墙结构中的连梁刚度相对墙体较小,而承受的弯矩和剪力很大,配筋设计困难。因此,可考虑在不影响其承受竖向荷载能力的前提下,允许其适当开裂而把内力转移到墙体上。
3.3.2增加剪力墙洞口的宽度、减小连梁高度
在进行连梁的设计中,为了达到降低连梁刚度,减少地震影响效果的目的,可以选择扩大剪力墙所开洞口的宽度,也就是增加连梁的总体跨度,从而使的连梁的高度降低。使得连梁的承载力保证在一定的标准范围内。
3.3.3增加剪力墙的厚度
在进行连梁设计可以,可以增加剪力墙的厚度,使得连梁的截面宽度变大,不仅仅可以让建筑结构整体的刚度变大,也使得地震产生的内力作用变得更大,而起,由于连梁的抗剪承载力与连梁宽度的增加成正比。通过剪力墙的厚度增加,也有可能达到让连梁抗剪承载力符合限度的目的。
4、总结
相对于框架结构,剪力墙结构有了更多可采纳的优点,如使用功能更好,结构更为简洁、宽敞,造价不高,施工容易等,可进行进一步的优化设计。但在设计中应注意以上提到的相关事宜。还要好好进行进一步的设计探讨研究,剪力墙的结构肯定能在建筑中得到很好的应用。
参考文献:
[1]李宝生. 高层建筑工程中的框架剪力墙结构施工技术[J]. 四川水泥, 2017(9).
[2]徐露娟, 张伟波. 剪力墙结构设计在建筑结构设计中的应用分析[J]. 大科技, 2017(23).
关键词:高层建筑;剪力墙结构;分析
1、高层建筑剪力墙的特点以及分类
剪力墙根据是不是开洞以及开洞的大小可以分为以下几个类型。
1.1实体墙
所谓实体墙就是指没有开洞或者开洞的面积小于整个墙体面积的15%。其受力的特点是就像一个悬臂墙。它的弯矩图既没有突变,也没有反弯点,整个墙体的变形是以弯曲型为主。
1.2整体的小开口剪力墙
这主要是指开孔的面积虽然大于整个墙体面积的15%,但是仍然属于小面积开孔的墙体,其受力的特点就是弯矩图在连接梁的地方发生突变,在高度上没有反弯点,或者是仅仅在个别的楼层才有反弯点。
1.3双脂肢或者多肢剪力墙
所谓的双肢或者多肢剪力墙主要是说开洞比较大的或者洞口成列布置的墙体。它的受力特点是和整体的小开口的剪力墙相类似的。
1.4壁式框架
壁式框架是指洞口的尺寸相对比较大,而连接梁线的刚度和墙肢线的刚度比较接近的墙体。其受力特点是弯矩图在楼层的地方放生突变,而且在大多数的楼层中都会出现反弯点。
2、剪力墙结构设计的基本原则
2.1要严格遵守肢长和厚度的比值,进行构件设计。由于剪力墙的高度和宽度尺寸都有着很大的不同,因此,要据几何特征和受力形态来计算肢长和厚度的比值,据结果实施按柱设计或者是按双向受压构件设计。
2.2既要满足刚度要求又要具有很强的变形性能和延性。剪力墙结构中,墙体会承受多方面的力度,既有水平剪力和弯矩,还承担竖向压力;在轴力、弯矩、剪力的复合状态下工作,因此,设计时候一般都是设计为延性弯曲型。既可以增加抗震性能,又可以防治脆性剪切造成破坏。
2.3剪力墙在设计时候要尽量避免平面外搭接,实在避免不了时应按规范采取相应措施,以保证剪力墙平面外安全。
2.4墙的设计计算是考虑水平和竖向作用下进行结构整体分析,求得内力后按偏压或偏拉进行正截面承载力和斜截面受剪承载力验算。当受较大集中荷载作用时再增加对局部受压承载力验算。
3、高层建筑剪力墙结构优化设计
3.1剪力墙的具体结构的设置
多高层的那些建筑是要有很好的空间的工作能力的,剪力墙的布置是需要双向的,从而组成空间的结构,尤其是抗震的防御区,更要免除单向的剪力墙布置的结构,最好是保证两个方向的刚度接近,剪力墙平面上分布要力求均匀,使其刚度中心和建筑物中心尽量接近。以减小扭转效应。必要时通过改变墙肢长度和连梁高度調整刚心位置。剪力墙抗侧刚度大,结构自振周期短,所受水平地震作用较大,对结构不利,可充分利用剪力墙的抗侧刚度及承载力均较大的能力,尽量减薄纵横墙体的厚度,或采用“主次结构”加大墙体的间距,减少墙体数量,以降低结构的抗侧移刚度,减轻结构重量,减少墙体的水平地震剪力和弯矩。剪力墙的特点是平面内刚度及承载力大,而平面外刚度及承载力都相对很小。当剪力墙与平面外方向的梁连接时,会造成墙肢平面外弯矩。当梁高大于2倍墙厚时,梁端弯矩可能会影响平面外的安全,所以要使用适当的办法,以确保安全,如果楼面的截面小,可以把结构设计成铰接或半刚接,这样可以适当的减少墙肢平面外变矩。
3.2底部加强部位的设计
在剪力墙设计时,一般高层剪力墙结构,底部加强部位的高度可取嵌固部位以上墙肢总高度的1/ 8和底部两层高度二者的较大值; 底部带转换层的高层建筑结构,其剪力墙底部加强部位的高度可取框支层加上框支层以上2层的高度及墙肢总高度的1/ 8二者的较大值。当将地下室顶板视作嵌固部位, 在地震作用下的屈服部位将发生在地上楼层,同时将影响到地下 1 层,此时地下1层的抗震等级不能降低,加强部位的范围应向下延伸到地下1层,并应按规范要求在地下1层设置约束边缘构件。
3.3连梁的设计布置
连梁的跨高以及截面的尺寸会受到各种条件的影响和限制,因此,在剪力墙的连梁设计中,会因为设计的不合理,容易出现连梁承载力或者是连梁的界面难以达到相关规定的标准,从而既会影响到工程的施工,又会影响到工程的质量。因此,要综合多种情况,进行设计和处理。
3.3.1对连梁的刚度进行折减
连梁由于跨高比较小与之相连的墙肢刚度大等原因,在水平力作用下的内力往往很大,连梁屈服时表现为梁端出现裂缝,刚度减小,内力重分布。因此,在开始进行结构整体计算时,就需对连梁刚度进行折减。高规中解释说高层建筑结构构件均采用弹性刚度参与整体分析,但抗震设计的剪力墙结构中的连梁刚度相对墙体较小,而承受的弯矩和剪力很大,配筋设计困难。因此,可考虑在不影响其承受竖向荷载能力的前提下,允许其适当开裂而把内力转移到墙体上。
3.3.2增加剪力墙洞口的宽度、减小连梁高度
在进行连梁的设计中,为了达到降低连梁刚度,减少地震影响效果的目的,可以选择扩大剪力墙所开洞口的宽度,也就是增加连梁的总体跨度,从而使的连梁的高度降低。使得连梁的承载力保证在一定的标准范围内。
3.3.3增加剪力墙的厚度
在进行连梁设计可以,可以增加剪力墙的厚度,使得连梁的截面宽度变大,不仅仅可以让建筑结构整体的刚度变大,也使得地震产生的内力作用变得更大,而起,由于连梁的抗剪承载力与连梁宽度的增加成正比。通过剪力墙的厚度增加,也有可能达到让连梁抗剪承载力符合限度的目的。
4、总结
相对于框架结构,剪力墙结构有了更多可采纳的优点,如使用功能更好,结构更为简洁、宽敞,造价不高,施工容易等,可进行进一步的优化设计。但在设计中应注意以上提到的相关事宜。还要好好进行进一步的设计探讨研究,剪力墙的结构肯定能在建筑中得到很好的应用。
参考文献:
[1]李宝生. 高层建筑工程中的框架剪力墙结构施工技术[J]. 四川水泥, 2017(9).
[2]徐露娟, 张伟波. 剪力墙结构设计在建筑结构设计中的应用分析[J]. 大科技, 2017(23).