论文部分内容阅读
针对现有欠采样处理算法中存在样本缺少代表性、分类性能差等问题,提出了一种基于聚类欠采样的加权随机森林算法(weighted random forest algorithm based on clustering under-sampling,CUS-WRF)。利用K-means算法对多数类样本聚类,引入欧氏距离作为欠采样时分配样本个数的权重依据,使采样后的多数类样本与少数类样本形成一个平衡的样本集,以CART决策树为基分类器,加权随机森林为整体框架,同时将测试样本的准确率作为每棵树的权值来完成对结果