论文部分内容阅读
摘 要 数学期望是概率论中的一个重要概念,是随机变量的数字特征之一,体现了随机变量总体取值的平均水平,本文主要阐述了数学期望的定义和性质,讨论了实际生活中的某些应用问题,从而使我们能够使用科学的方法对其进行量化的评价,平衡了极大化期望和极小化风险的矛盾,达到我们期望的最佳效果。
关键词 概率统计 数学期望 实际问题 应用
早在17世纪,有一个赌徒向当时的法国数学家提出一个使他苦恼了很久的问题:“两个赌徒相约赌若干局,比赛规则是先胜三局者为赢家,赢家可以获得100法郎的奖励。他们两人获胜的机率相等。但是当其中一个人赢了2局,另一个人赢了1局的时候,由于某种原因终止了赌博。问:赌资应该怎样分才合理?”那么如何分配这100法郎才比较公平?用概率统计的知识,不难得知,甲获胜的概率为1/2+(1/2)*(1/2)=3/4,或者分析乙获胜的概率为(1/2)*(1/2)=1/4。因此由此引出了甲的期望所得值为100*3/4=75法郎,乙的期望所得值为25法郎。这个故事里出现了“期望”这个词,数学期望由此而来。在经济生活中,有许多问题都可以直接或间接的利用数学期望来解决,风险决策中的期望值法便是处理风险决策问题常用的方法。数学期望是随机变量的数字特征之一,它代表了随机变量总体取值的平均水平。
一、期望的概念及性质
1、离散型随机变量的数学期望
2、连续型随机变量的数学期望
3、期望的性质
二、数学期望在实际问题中的应用
1、决策投资方案
决策方案即将数学期望最大的方案作为最佳方案加以决策。它帮助人们在复杂的情况下从可能采取的方案中做出选择和决定。具体做法为:如果知道任一方案Ai(i=1,2,…m)在每个影响因素Sj(j=1,2,…,n)发生的情况下,实施某种方案所产生的盈利值及各影响因素发生的概率,则可以比较各个方案的期望盈利,从而选择其中期望盈利最高的为最佳方案。
假设某人用10万元进行为期一年的投资,有两种投资方案:一是购买股票;二是存入银行获取利息。买股票的收益取决于经济形势,若经济形势好可获利4万元,形势中等可获利1万元,形势不好要损失2万元。如果存入银行,假设利率为8%,可得利息8000元,又设经济形势好、中、差的概率分别为30%、50%、20%。试问应选择哪一种方案可使投资的效益较大?
比较两种投资方案获利的期望大小:购买股票的获利期望是E(A1)=4€?.3+1€?.5+(-2)€?.2=1.3(万元),存入银行的获利期望是E(A2)=0.8(万元),由于E(A1)>E(A2),所以购买股票的期望收益比存入银行的期望收益大,应采用购买股票的方案。在这里,投资方案有两种,但经济形势是一个不确定因素,做出选择的根据必须是数学期望高的方案。
2、进货问题
设某种商品每周的需求是从区间[10,30]上均匀分布的随机变量,经销商进货量为区间[10,30]中的某一整数,商店销售一单位商品可获利5000元,若供大于求,则削价处理,每处理一单位商品亏价100元,若供不应求,则可以外部调剂供应,此时一单位商品获利300元,为使商品所获利润期望不少于9280,试确定进货量。
解:设进货量a,则利润为=Y=g(X)
解得:20≤a≤26,
故利润期望不少于9280元的最少进货量为21单位。
3、面试方案
4、保险公司获利问题:一年中一个家庭晚万元被盗的概率是0.01,保险公司开办一年期万元以上家庭财产保险,参加者需交纳保险费100元,若一年内万元以上财产被盗,保险公司赔偿a元(a>100),试问a如何确定才能使保险公司获利?
三、結束语
数学期望具有广泛的应用价值。实践证明当风险决策问题较为复杂时,决策者在保持自身判断的条件下处理大量信息的能力将减弱,在这种情况下,风险决策的分析方法可为决策者提供强有力的科学工具,以帮助决策者作出决策,但不能代替决策者进行决策。因为在现实生活中的风险决策还会受到诸多因素的影响,决策者的心理因素,社会上的诸多因素等,人们还需综合各方面的因素作出更加合理的决断。
(作者单位:襄阳职业技术学院)
关键词 概率统计 数学期望 实际问题 应用
早在17世纪,有一个赌徒向当时的法国数学家提出一个使他苦恼了很久的问题:“两个赌徒相约赌若干局,比赛规则是先胜三局者为赢家,赢家可以获得100法郎的奖励。他们两人获胜的机率相等。但是当其中一个人赢了2局,另一个人赢了1局的时候,由于某种原因终止了赌博。问:赌资应该怎样分才合理?”那么如何分配这100法郎才比较公平?用概率统计的知识,不难得知,甲获胜的概率为1/2+(1/2)*(1/2)=3/4,或者分析乙获胜的概率为(1/2)*(1/2)=1/4。因此由此引出了甲的期望所得值为100*3/4=75法郎,乙的期望所得值为25法郎。这个故事里出现了“期望”这个词,数学期望由此而来。在经济生活中,有许多问题都可以直接或间接的利用数学期望来解决,风险决策中的期望值法便是处理风险决策问题常用的方法。数学期望是随机变量的数字特征之一,它代表了随机变量总体取值的平均水平。
一、期望的概念及性质
1、离散型随机变量的数学期望
2、连续型随机变量的数学期望
3、期望的性质
二、数学期望在实际问题中的应用
1、决策投资方案
决策方案即将数学期望最大的方案作为最佳方案加以决策。它帮助人们在复杂的情况下从可能采取的方案中做出选择和决定。具体做法为:如果知道任一方案Ai(i=1,2,…m)在每个影响因素Sj(j=1,2,…,n)发生的情况下,实施某种方案所产生的盈利值及各影响因素发生的概率,则可以比较各个方案的期望盈利,从而选择其中期望盈利最高的为最佳方案。
假设某人用10万元进行为期一年的投资,有两种投资方案:一是购买股票;二是存入银行获取利息。买股票的收益取决于经济形势,若经济形势好可获利4万元,形势中等可获利1万元,形势不好要损失2万元。如果存入银行,假设利率为8%,可得利息8000元,又设经济形势好、中、差的概率分别为30%、50%、20%。试问应选择哪一种方案可使投资的效益较大?
比较两种投资方案获利的期望大小:购买股票的获利期望是E(A1)=4€?.3+1€?.5+(-2)€?.2=1.3(万元),存入银行的获利期望是E(A2)=0.8(万元),由于E(A1)>E(A2),所以购买股票的期望收益比存入银行的期望收益大,应采用购买股票的方案。在这里,投资方案有两种,但经济形势是一个不确定因素,做出选择的根据必须是数学期望高的方案。
2、进货问题
设某种商品每周的需求是从区间[10,30]上均匀分布的随机变量,经销商进货量为区间[10,30]中的某一整数,商店销售一单位商品可获利5000元,若供大于求,则削价处理,每处理一单位商品亏价100元,若供不应求,则可以外部调剂供应,此时一单位商品获利300元,为使商品所获利润期望不少于9280,试确定进货量。
解:设进货量a,则利润为=Y=g(X)
解得:20≤a≤26,
故利润期望不少于9280元的最少进货量为21单位。
3、面试方案
4、保险公司获利问题:一年中一个家庭晚万元被盗的概率是0.01,保险公司开办一年期万元以上家庭财产保险,参加者需交纳保险费100元,若一年内万元以上财产被盗,保险公司赔偿a元(a>100),试问a如何确定才能使保险公司获利?
三、結束语
数学期望具有广泛的应用价值。实践证明当风险决策问题较为复杂时,决策者在保持自身判断的条件下处理大量信息的能力将减弱,在这种情况下,风险决策的分析方法可为决策者提供强有力的科学工具,以帮助决策者作出决策,但不能代替决策者进行决策。因为在现实生活中的风险决策还会受到诸多因素的影响,决策者的心理因素,社会上的诸多因素等,人们还需综合各方面的因素作出更加合理的决断。
(作者单位:襄阳职业技术学院)