论文部分内容阅读
针对目前存在的合成解析字典学习方法不能有效地消除同类样本之间的差异性和忽略了不同特征对分类的不同影响的问题,提出了一种基于多视图特征投影与合成解析字典学习(MFPSDL)的图像分类方法。首先,在合成解析字典学习过程中为每种特征学习不同的特征投影矩阵,减小了类内样本间的差异对识别带来的影响;其次,对合成解析字典添加鉴别性的约束,使得同类样本具有相似的稀疏表示系数;最后通过为不同类型的特征学习权重,充分地融合多种特征。在公开人脸数据库(LFW)和手写体识别数据库(MNIST)上进行多项对比实验,MFPS