论文部分内容阅读
采用密度泛函理论(DFT)探讨了高自旋原儿茶酚3,4-双加氧酶(3,4-PCD)活化底物儿茶酚(PCA)复合物的磁性电子结构特征及电子轨道起源.计算的g-张量表明,从配体到金属电荷转移(LMCT)主要来自于配体PCA和Tyr408的型轨道转移电子到Fed轨道,导致沿x轴方向极化(PCA)或沿y轴方向极化(Tyr408).x和y轴方向的极化要求沿z轴方向,Lz(z=z′),产生较大的自旋轨道耦合(SOC)矩阵元,并且因单中心重原子效应Fe导致gz′=2.0158,即在z方向较大地偏离于ge=2.0023.由于△S=-1自旋翻转激发态混入六重基态,得到较大的零场分裂参数D=+1.147cm-1.SOC计算表明高自旋(S=5/2)基态3,4-PCD-PCA是弱的自旋翻转复合物(SOC=31.56cm-1).
Density functional theory (DFT) was used to investigate the magnetic electronic structure and electron orbital origin of 3,4-dioxygenase (3,4-PCD) activated catechol (PCA) complex The calculated g-tensor shows that the ligand-to-metal charge transfer (LMCT) mainly comes from the orbital transport of the ligands PCA and Tyr408 to the orbital, resulting in polarization along the x-axis (PCA) or along the y-axis Directional polarization (Tyr 408). Polarization in the x and y axis directions requires a larger spin-orbit coupling (SOC) matrix element along the z-axis direction, Lz (z = z ’ Fe lead to gz ’= 2.0158, ie deviate greatly from ge = 2.0023 in the z direction. Because △ S = -1 spin flip excited state mixed into the six-base state, the larger zero field splitting parameter D = + 1.147cm-1 .SOC calculations show that 3,4-PCD-PCA in the high-spin (S = 5/2) ground state is a weak spin-flip complex (SOC = 31.56 cm -1).