基于粒子群优化算法和非线性盲源信号分离测量两相流速度(英文)

来源 :Chinese Journal of Chemical Engineering | 被引量 : 0次 | 上传用户:m2564
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
In order to overcome the disturbance of noise,this paper presented a method to measure two-phase flow velocity using particle swarm optimization algorithm,nonlinear blind source separation and cross correlation method.Because of the nonlinear relationship between the output signals of capacitance sensors and fluid in pipeline,nonlinear blind source separation is applied.In nonlinear blind source separation,the odd polynomials of higher order are used to fit the nonlinear transformation function,and the mutual information of separation signals is used as the evaluation function.Then the parameters of polynomial and linear separation matrix can be estimated by mutual information of separation signals and particle swarm optimization algorithm,thus the source signals can be separated from the mixed signals.The two-phase flow signals with noise which are obtained from upstream and downstream sensors are respectively processed by nonlinear blind source separation method so that the noise can be effectively removed.Therefore,based on these noise-suppressed signals,the distinct curves of cross correlation function and the transit times are obtained,and then the velocities of two-phase flow can be accurately calculated.Finally,the simulation experimental results are given.The results have proved that this method can meet the measurement requirements of two-phase flow velocity. In order to overcome the disturbance of noise, this paper presented a method to measure two-phase flow velocity using particle swarm optimization algorithm, nonlinear blind source separation and cross correlation method. Because of the nonlinear relationship between the output signals of capacitance sensors and fluid in pipeline, nonlinear blind source separation is applied. nonlinear blind source separation, the odd polynomials of higher order are used to fit the nonlinear transformation function, and the mutual information of separation signals is used as the evaluation function. The parameters of polynomial and linear separation matrix can be estimated by mutual information of separation signals and particle swarm optimization algorithm, thus the source signals can be separated from the mixed signals. two-phase flow signals with noise which are obtained from upstream and downstream sensors are separately processed by nonlinear blind source separation method so that the noise can the effective curves of cross correlation function and the transit times are obtained, and then the velocities of two-phase flow can be accurately calculated. Finally, the simulation experimental results are given The results have proved that this method can meet the measurement requirements of two-phase flow velocity.
其他文献
目的 探究对支气管扩张伴咯血患者实施干预性护理的临床价值.方法 选取于2017年6月至2019年12月本院收治的60例支气管扩张伴咯血患者,随机分为观察组(干预性护理)和对照组(常
目的 分析对慢阻肺患者实施电话回访式连续护理干预对其生活质量的影响.方法 从2018年05月至2020年05月就诊于我院慢阻肺患者中的124例作为本次研究对象,以随机数表法将每组
目的 研究分析手术室优质护理在乳腺癌手术中的应用价值.方法 选取本院2018年6月至2019年6月之间实施乳腺癌手术患者为研究对象,例数36,分别设立常规组(行手术室常规护理)和
目的 探究健康教育在内分泌失调合并糖尿病护理中应用分析.方法 自2018年2月至2020年2月收取的70例内分泌失调合并糖尿病患者作为研究对象,依照就诊单号形式设置两组各35例,
目的 研究临床护理路径干预在结肠息肉患者在治疗期间的临床应用效果.方法 选择在我院接受治疗的88例结肠息肉患者,按照护理方式,将患者分成两组每组44例.实施常规肛肠科护理
目的 研究质量控制小组管理模式在手术室护理管理中的应用.方法 收集2018年3月到2020年3月这个时间段里,进行手术治疗的患者28例,进行这次研究.平均随机分组,两个组都是19人,
目的 探讨舒适护理模式用于小腿骨折合并骨筋膜室综合征患者中的效果.方法 研究对象为我院2017年4月-2018年8月收治的小腿骨折合并骨筋膜室综合征患者96例,随机分成对照组和
目的 通过对脑梗塞吞咽障碍患者实施个性化护理,分析其临床效果.方法 选取2018年2月至2019年2月82例脑梗塞吞咽障碍患者作为研究对象,运用随机数字表法分为实验组与对照组各4
目的 本文研究中医护理技术应用于混合痔术后疼痛患者对其疼痛程度的影响效果.方法 本次研究时间选择在2019年1月到2019年12月,研究对象选择在研究时间期间到我院就诊的90例
目的 探究安全管理在护理管理中的重要性.方法 选择我院2018年3月-2019年6月期间800例住院患者作为研究样本,采用数字随机法分组之后,得到优质组和常规组,分别以常规护理、安