论文部分内容阅读
提出了一种基于知识的模糊神经网络并用于故障诊断。首先基于粗糙集对样本数据进行初步规则获取,并计算规则的依赖度和条件覆盖度,然后根据规则数目进行模糊神经网络结构部分设计,规则的依赖度和条件覆盖度用于设定网络初始权重,而用遗产算法对神经网络输出参数进行优化。这样的模糊神经网络称为基于知识的模糊神经网络。使用该网络对旋转机械常见故障进行诊断,结果表明,和一般模糊神经网络相比,该网络具有训练时间短而诊断率高的特点。