论文部分内容阅读
The energetics, electronic structure and mechanical property of Co3(Al,W) precipitates with different ratio of Al to W in Co base alloys were investigated by the method of supercell and augmented plane waves plus local orbitals within generalized gradient approximation. The calculated results show that the L12 Co3(Al,W) precipitate is the most stable when the ratio of Al to W is equal to 1. When the content of W is higher than 18.5 at%, the L12 and hexagonal structures co-exist in Co3(Al,W) precipitates at 1173 K. It is also shown that the L12 ordered Co3(Al,W) precipitates have an obvious strengthening effect in the disordered fcc cobalt matrix.
The energetics, electronic structure and mechanical property of Co3 (Al, W) precipitates with different ratio of Al to W in Co base alloys were investigated by the method of supercell and augmented plane waves plus local orbitals within generalized gradient approximation. The calculated results show that the L12 Co3 (Al, W) precipitate is the most stable when the ratio of Al to W is equal to 1. When the content of W is higher than 18.5 at%, the L12 and hexagonal structures co-exist in Co3 (Al , W) precipitates at 1173 K. It is also shown that the L12 ordered Co3 (Al, W) precipitates have an obvious strengthening effect in the disordered fcc cobalt matrix.