论文部分内容阅读
在电子鼻的模式识别方法中,主成分分析(PCA)是常用的方法之一。然而,主成分分析在计算过程中消除了各变量(对应于电子鼻的各测量传感器)问的相关性,这与传感器阵列的交叠感应特性相悖,致使时常无法正确鉴别多组分物品的类别。本文将Eilks准则引入主成分分析中,解决了酒类鉴别中主成分主轴向量的选择问题,实现了3种不同种类酒的正确鉴别,突破了纯粹的主成分分析模式。同时,指出了在用电子鼻鉴别多组分物品的种类时,主成分主轴的选择并非完全按照主成分贡献率的大小来确定的,这为今后的相关研究提供了一些有益的参考。