论文部分内容阅读
针对高光谱曲线中可能存在噪声以及传统半经验方法不能有效利用全部光谱信息的问题,提出了耦合Haar小波变换和偏最小二乘的水质遥感高光谱建模方法(Haar WT-PLS)。利用该方法,对在南四湖获取的实测高光谱数据经分解尺度为3的Haar小波变换后,将原始光谱数据压缩到47个特征变量;随后利用小波变换重构的光谱数据建立了悬浮物浓度和浊度的Haar WT-PLS反演模型,并进行了验证。结果表明:Haar WT-PLS反演悬浮物浓度和浊度精度较高,验证样本的均方根误差分别为25.05 mg/L和20.10N