论文部分内容阅读
Land use changes can greatly influence soil phosphorus (P) dynamics, especially when converting native forests to agricultural land. Soils in Xishuangbanna, which is one of southwest China’s tropical areas that maintain fragments of primary forests, were studied to a) evaluate the effect of two common land use changes, conversion of forests to agricultural land or rubber tree plantation, on the dynamics of available P and total P in bulk soils as well as total P in particle size fractions; b) assess the relationship between soil P dynamics and soil organic carbon (SOC); and c) elucidate the relationship between soil P content and soil properties such as pH and texture. Clearing secondary forests with subsequent shifting cultivation and establishment of rubber tree plantation caused significant decreases (P < 0.05) in available P at 0-20 cm soil depths, whereas for total P there was a significant decrease (P < 0.05) when converting to shifting cultivation, rubber tree plantation, or fallow field at both 0
Land use changes can greatly influence soil phosphorus (P) dynamics, especially when converting native forests to agricultural land. Soils in Xishuangbanna, which is one of southwest China’s tropical areas that maintain fragments of primary forests, were studied to a) evaluate the effect of two common land use changes, conversion of forests to agricultural land or rubber tree plantation, on the dynamics of P and total P in bulk soils as well as total P in particle size fractions; b) assess the relationship between soil P dynamics and soil organic carbon (SOC); and c) elucidate the relationship between soil P content and soil properties such as pH and texture. Clearing secondary forests with subsequent shifting cultivation and establishment of rubber tree plantation caused significant reduction (P <0.05) in available P at 0-20 cm soil depths, while for total P there was a significant decrease (P <0.05) when converting to shifting cultivation, rubber tree plantation, or fal low field at both 0