论文部分内容阅读
如何从海量多媒体文章中自动识别高质量内容是信息推荐、搜索引擎等系统的核心功能之一.现有的方法在训练中依赖大量的人工标注数据.针对其未考虑社交媒体中的社交信息和视觉内容的问题,提出一种基于正无标记(positive and unlabeled, PU)学习的图卷积高质量文章内容识别模型——基于PU学习的图卷积网络(graph convolutional network based on positive and unlabeled learning, GCN-PU),在统一的框架中使用一个异构网络同时