【摘 要】
:
In emergency decision making (EDM),it is necessary to generate an effective alternative quickly.Case-based reasoning (CBR) has been applied to EDM;however,choosing the most suitable case from a set of similar cases after case retrieval remains challenging
【机 构】
:
College of Electronics and Information Science,Fujian Jiangxia University,Fuzhou 350108,China;Instit
论文部分内容阅读
In emergency decision making (EDM),it is necessary to generate an effective alternative quickly.Case-based reasoning (CBR) has been applied to EDM;however,choosing the most suitable case from a set of similar cases after case retrieval remains challenging.This study proposes a dynamic method based on case retrieval and group decision making (GDM),called dynamic case-based reasoning group decision making (CBRGDM),for emergency alternative generation.In the proposed method,first,similar historical cases are identified through case similarity measurement.Then,evaluation information provided by group decision makers for similar cases is aggregated based on regret theory,and comprehensive perceived utilities for the similar cases are obtained.Finally,the most suitable historical case is obtained from the case similarities and the comprehensive perceived utilities for similar historical cases.The method is then applied to an example of a gas explosion in a coal company in China.The results show that the proposed method is feasible and effective in EDM.The advantages of the proposed method are verified based on comparisons with existing methods.In particular,dynamic CBRGDM can adjust the emergency alternative according to changing emergencies.The results of application of dynamic CBRGDM to a gas explosion and comparison with existing methods verify its feasibility and practicability.
其他文献
细颗粒物(PM2.5)和臭氧(03)是我国的主要大气污染物,严重危害人群健康.北京市自2013年以来大力开展大气污染治理工作,现已取得显著成效.通过分析2014~2020年北京市34个大气环境监测站的PM2.5和O3浓度变化特征并评估大气污染防治的健康效应,对推进大气污染防治具有重要意义.结果 表明,2014年北京市PM2.5年均值和4~9月平均O3日最大小时(03_max)值分别为92.0 μg·m-3和81.9 nmo1·mol-1.2014 ~2020年PM2.5平均每年降低7.5 μg·m-3,但
摘要:随着对自然湿地作用的深入认识,世界上城市水体景观设计也逐渐从纯粹的水景设计过渡到对湿地系统的设计或改造。湿地素有“地球之肾”的美誉,和森林、海洋并列为地球三大生态系统。在进行湿地的景观设计时,除了考虑美学上的功能外,生态功能也是首要考虑的因素之一。 关键词:湿地公园、建设、景观设计 中图分类号: S611 文献标识码: A 一、前言 湿地公园是指在一定的区域内,通过人工手段对原有
Background:The coronavirus pandemic (COVID-19) is causing a havoc globally,exacerbated by the newly dis-covered SARS-CoV-2 virus.Due to its high population density,India is one of the most badly effected countries from the first wave of COVID-19.Therefore
Subsurface technologies,such as geothermal energy and carbon capture and storage,are options to help limit global warming.Subsurface technologies involve the risk of induced seismicity.The successful implementation of these technologies depends on the pub
Rapid urbanization and natural hazards are posing threats to local ecological processes and ecosystem services worldwide. Using land use, socioeconomic, and natural hazards data, we conducted an asses
于2017 ~2018年冬、春和夏季,在黄渤海海域走航采样,采集总悬浮颗粒物(TSP)样品,分析总砷(As)、As(Ⅴ)、As(Ⅲ)以及水溶性离子,讨论了As在黄渤海气溶胶中浓度、空间分布以及季节变化,估算了As的干沉降通量.气溶胶中As含量冬季(6.6 ng·m-3)>夏季(5.5 ng·m-3)>春季(4.4 ng·m-3),渤海和北黄海远大于南黄海.冬、夏季As(Ⅲ)/As(Ⅴ)比值分别为0.41和0.21.冬、春和夏季As/TSP平均值分别为95.4、83.9和81.4 μg·g-1,冬季明显高于
Southeast Asia\'s coastal urban areas continue to grow,with land reclamation fast becoming an important option for megacities to address issues of economic growth and increasing population density.Experts are divided over the advantages and disadvantage
本研究基于采样分析与WRF-CAMx-PSAT模式分析了2018年1月北京和唐山PM2.5的组分特征、传输特征和来源解析.结果 表明,2018年1月北京和唐山水溶性无机离子占PM25质量浓度的49.59%和39.13%,两地NO3-/SO42-分别为2.02和1.51,均受移动源主导,北京和唐山PM2.5外来贡献分别占总浓度的48.74%和30.67%,除此之外主要受到邻近局地、西北通道和西南通道这3个方面的污染输送.在污染日时段,两地受西南通道污染贡献分别上升9.65%和15.02%.北京PM2.5污染
Background:The concept of biomolecular condensate was put forward recently to emphasize the ability of certain cellular compartments to concentrate molecules and comprise proteins and nucleic acids with specific biological functions,from ribosome genesis
全国各地为了减少新冠疫情对社会和人民生活的影响,采取了必要的防疫防控措施,这些措施对空气质量的变化产生了重要的影响,此外空气质量的变化与气象条件也存在很大的关系.通过对河南省疫情前(1月1 ~ 26日)和疫情管控期(1月27日~2月29日)这两阶段的空气质量分析对比发现,整个河南省除了O3浓度上升了69.64%外,PM2.5、PM10、SO2、CO和NO2分别降低了36.89%、34.18%、19.43%、29.85%和58.51%;通过机器学习算法中的长短期记忆型网络(LSTM)模拟显示,气象条件引起污