论文部分内容阅读
提出了一种新的字典学习法用于图像的超分辨率复原,即双层混合字典。其中,第一层字典采用半耦合字典,确保了复原过程的灵活性和准确性,并结合稀疏表示算法得到第一层复原图像;为了不影响算法的整体运算速度,第二层字典采用分类字典,并利用原始图像与第一层复原图像的差值作为高分辨率样本,以便能恢复更多的高频细节。实验结果表明,本算法与传统的基于单一字典的图像超分辨率算法相比,无论是在视觉效果上,还是峰值信噪比(PSNR)指标,都取得了更为理想的效果,有效地改善了降质图像的质量。