论文部分内容阅读
This paper presents an experimental and numerical study of short-fiber-reinforced rubber matrix sealing composites(SFRC). The transverse tensile stress-strain curves of SFRC are obtained by experiments. Based on the generalized self-consistent method, a representative volume element(RVE) model is established, and the cohesive zone model is employed to investigate the interfacial failure behavior. The effect of interphase properties on the interfacial debonding behavior of SFRC is numerically investigated. The results indicate that an interphase thickness of 0.3 μm and an interphase elastic modulus of about 502 MPa are optimal to restrain the initiation of the interfacial debonding. The interfacial debonding of SFRC mainly occurs between the matrix/interphase interface,which agrees well with results by scanning electron microscope(SEM).
This paper presents an experimental and numerical study of short-fiber-reinforced rubber matrix sealing composites (SFRC). The transverse tensile stress-strain curves of SFRC are obtained by experiments. Based on the generalized self-consistent method, a representative volume element RVE) model is established, and the cohesive zone model is employed to investigate the interfacial failure behavior. The effect of interphase properties on the interfacial debonding behavior of SFRC is numerically investigated. The results that an interphase thickness of 0.3 μm and an interphase elastic modulus of about 502 MPa are optimal to restrain the initiation of the interfacial debonding. The interfacial debonding of SFRC mainly occurs between the matrix / interphase interface, which agrees well with results by scanning electron microscope (SEM).