论文部分内容阅读
随着视频处理技术和网络技术的发展,视频监控应用逐渐渗透到了人们日常活动中的方方面面,如何设计实现精度高、鲁棒性好的目标跟踪技术仍然是当今研究的热点及难点;在工程应用实践的基础上,提出一多特征融合与自适应模型更新的空时上下文目标跟踪算法,通过将丰富多样的多特征信息整合到空时上下文模型中;由于多特征具有互补特性,可以克服单一特征对目标区域描述不足的缺陷,提升算法的抗干扰能力;同时,也提出了一种自适应学习因子策略,增强了模型的泛化能力;选取的特征集是鲁棒的,包括了颜色、梯度、方向、点特征等总共19个特征,