【摘 要】
:
现有的大多数网络表示学习方法很难兼顾网络中丰富的结构信息和属性信息,导致其后续任务,如分类、聚类等的效果不佳。针对此问题,提出一种基于自编码器的多视图属性网络表示学习模型(AE-MVANR)。首先,将网络的拓扑结构信息转化为拓扑结构视图(TSV),通过计算节点间相同属性共现频率来构造属性结构视图(ASV);然后,在两个视图上分别利用随机游走算法得到若干节点序列;最后,经过自编码器训练得到的序列,从
【基金项目】
:
中央高校基本科研业务费专项资金资助项目(3122018C020)