The tensor algebras of Yetter-Drinfeld module

来源 :上海师范大学学报·自然科学版 | 被引量 : 0次 | 上传用户:charset
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  Abstract: The antipode of a Yetter-Drinfeld Hopf algebra is an anti-algebra and anti-coalgebra map is proved.It is also proved that the tensor algebra of Yetter-Drinfeld Hopf module is a Yetter-Drinfeld Hopf algebra.
  Key words: Hopf algebra; antipode; comodule; Yetter-Drinfeld Hopf algebras
  CLC number: O 154.1 Document code: A Article ID: 1000-5137(2014)05-0523-06
  Corresponding author: Yanhua Wang,Associate professor,E-mail: yhw@mail.shufe.edu.cn.1 Introduction
  Let H be a Hopf algebra (bialgebra),a left-left Yetter-Drinfeld module over Hopf algebra (bialgebra) H is a k-linear space V which is a left H-module,a left H-comodule and satisfies a certain compatibility condition.Yetter-Drinfeld modules were introduced by Yetter in [1] under the name of "crossed bimodule".Radford proved that pointed Hopf algebras can be decomposed into two tensor factors,one factor of the two factors is no longer a Hopf algebra,but a rather a Yetter-Drinfeld Hopf algebra over the other factor [2].Subsequently,Schauenburg proved that the category of Yetter-Drinfeld module over H was equivalent to the category of left module over Drinfeld double,and also to the category of Hopf module over H [3],and Sommerhauser studied Yetter-Drinfeld Hopf algebra over groups of prime order [4].
  Some conclusions of Hopf algebras can be applied to Yetter-Drinfeld Hopf algebras.For example: Doi considered the Hopf module theory of Yetter-Drinfeld Hopf algebras in [5],Scharfschwerdt proved the Nichols Zoeller theorem for Yetter-Drinfeld Hopf algebras in [6],and Andruskiewitsch and Schneider gave the trace formula for Yetter-Drinfeld Hopf algebras in [7].
  In this paper,we generalized the antipode properties of Hopf algebras to Yetter-Drinfeld Hopf algebras.We proved the antipode of a Yetter-Drinfeld Hopf algebra is an anti-algebra and anti-coalgebra map,see Proposition 1 and Proposition 2.We study the tensor algebra of Yetter-Drinfeld module,and show that the tensor algebra of Yetter-Drinfeld module is a Yetter-Drinfeld Hopf algebra under a tensor multiplication and a "twisted" comultiplication,see Theorem 4.
  In the following,k will be a field.All algebras and coalgebras are over k.All unadorned  are taken over k.
  2 Preliminaries of Yetter-Drinfeld Hopf algebras
  The tensor algebras of Yetter-Drinfeld module for all h∈H,v∈V.The category of left Yetter-Drinfeld module is denoted by HHYD.
  We begin by recalling the notion of Yetter-Drinfeld Hopf algebras.A is a Yetter-Drinfeld bialgebra in HHYD if A is a k-algebra and a k-coalgebra with comultiplication △ and counit  and the following (a1)-(a5) hold, One easily see that S is both H-linear and H-colinear.In general,Yetter-Drinfeld Hopf algebras are not ordinary Hopf algebras because the bialgebra axiom asserts that they obey (a5).However,it may happen that Yetter-Drinfeld Hopf algebras are ordinary Hopf algebras when the pre-braiding is trivial,for details see [4].   Next,we give a basic property of Yetter-Drinfeld Hopf algebra.It is well know that the antipode of a Hopf algebra is an anti-algebra and anti-coalgebra map,see [8-10].This is also true for Yetter-Drinfeld Hopf algebra.The following lemma give the character.
  Proposition 1 A is a Yetter-Drinfeld Hopf algebra with antipode S: A A,then S is an anti-algebra and anti-coalgebra automorphism,a,b∈A,that is The proof of S is an anti-coalgebra automorphism is similar to the proof of S is an anti-algebra automorphism.
  In general,it is not always easy to verify a given map S: A A is the antipode for a Yetter-Drinfeld Hopf algebra A,but it should be simpler to check (a6) only on generators of A.Thus,it is convenient to have the following
  Proposition 2 Let A be a bialgebra in HHYD and S: A A be an algebra anti-automorphism.Assume that A is generated as an algebra by a subset X of A,such that (Sid)(a)=u(a)=(idS)(a) for all a∈X.Then S is the antipode of Yetter-Drinfeld Hopf algebra A.
  References:
  [1] D.N.Yetter.Quantum groups and representation of monoidal categories [J].Math.Proc.Cambridge Philos.Soc.,1990,108:261-290.
  [2] D.Radford.The structure of Hopf algebras with a projection [J].J.Algebra,1985,92:322-347.
  [3] P.Schauenburg.Hopf modules and Yetter-Drinfeld modules [J].J.Algebra,1994,169:874-890.
  [4] Y.Sommerhauser.Yetter-Drinfeld Hopf algebras over groups of prime order [C]//Lecture Notes in Mathemtics,Vol.1789,Springer,2002.
  [5] Y.Doi.Hopf module in Yetter-Drinfeld categories [J].Comm.Algebra,1998,26(9):3057-3070.
  [6] Scharfschwerdt.The Nichols-Zoeller theorem for Hopf algebras in the category of Yetter-Drinfeld modules [J].Comm.Algebra,2001,29(6):2481-2487.
  [7] Y.Doi.The trace formula for braided Hopf algebras [J].Comm.Algebra,2000,28(4):1881-1895.
  [8] S.Dascalescu,C.Nastasescu,S.Raianu.Hopf algebra; An introduction [M].New York:Marcel Dekker,Inc.,2001.
  [9] S.Montgomery.Hopf algebras and their actions on rings [C].CBMS Regional Conf.Series in Math.82,Amer.Math.Soc.,Providence,RI 1993.
  [10] M.E.Sweedler.Hopf algebras [M].New York:Benjamin,1969.
  (Zhenzhen Feng,Hui Yu)
其他文献
在当代社会,我国想要实现农业的快速发展,就必须充分重视农业科技创新。虽然当前我国现代化农业科技创新取得了一些成就,但仍存在很多的不足,导致当前我国农业科技水平与先进
【摘 要】高等教育大众化进程中大学教师的学术职业能力呈现多重结构,知识与技术的快速流动使大学教师成为知识生产联盟中的一员,整合与创新是现代高效教师学术力的核心。培养优秀大学教师需要我们注重与外界的联盟,制订教师专业发展培训计划等。  【关键词】多重结构、流动性 学术力  伴随着中国高等教育进入大众化阶段,研究高等教育发展面临的各种问题开始受到学术界的关注。作为文化知识的传播者——大学教师,其学术发
钢琴只有通过演奏才能向大家传递音乐的魅力,才能彰显出钢琴的表现力,所以在钢琴演奏中技巧是十分重要的,好的演奏技巧可以修饰音色,更好地表现音乐作品,展现钢琴的艺术魅力,这也是
近年来,随着农业种植业结构调整力度的不断加大,红薯、大白菜等秋季晚熟作物的种植面积不断扩大,晚播小麦面积随之不断扩大。因此,如何管理好晚播小麦显得越来越重要。基于此
【摘 要】在当代文化语境下,中国画存在的功能、意义和价值正在发生着根本的变化,面对传统观念和多元社会的冲突,学院派的教学应更具当代的视野和判断。对师徒相承——临摹——写生——创作这一自古被视为学习中国画的必由之路的模式的重新审视,对此种模式下衍生出的“艺术”的重复,甚至“艺术家”的重复这一奇怪现象的自我考问都要求对中国画的学习方式有更为科学的研究及论证。  【关键词】中国画 写生 临摹  学院派的
【摘 要】文章就如何加强院系资料室建设作了初步探讨,并围绕推进管理体制改革、解决资金缺乏途径、加强专业队伍建设和健全制度等问题提出了建议。  【关键词】院系资料室 管理体制 队伍建设 经费保障  高校院系资料室作为本校图书文献资料服务工作的基层机构,与图书馆共同构成学校的文献信息中心,同是为教学和科研服务的学术性机构。但不少院系资料室服务功能远远不能适应教学科研日益增大的文献信息服务需求。如何加强
【摘 要】大学生实践能力、创造能力、就业能力和创业能力的培养是当代高校教育的重要任务,是增强高校毕业生竞争力,为社会输送高水平人才的客观要求。中医药院校图书馆拥有丰富的图书及信息资源,传统的图书管理和服务方式已不能满足培养大学生“四种能力”的需要,通过改革和创新服务方式能为增强大学生“四种能力”,构建全方位创新人才培养体系作出重要贡献。  【关键词】中医药院校 图书馆 四种能力  党的十六届三中全
利用伪除法给出了一类复多项式微分系统奇点量的计算方法,得到了两类复多项式微分系统可积的充要条件,并通过构造积分因子或形式首次积分验证了所得条件的正确性.