论文部分内容阅读
This paper investigates the procedure of cubic boron nitride(cBN)thin film delamination by Fourier-transform infrared(IR)spectroscopy.It finds that the apparent IR absorption peak area near 1380 cm-1 and 1073 cm-1 attributed to the B-N stretching vibration of sp2-bonded BN and the transverse optical phonon of cBN,respectively,increased up to 195% and 175% of the original peak area after film delamination induced compressive stress relaxation.The increase of IR absorption of sp2-bonded BN is found to be non-linear and hysteretic to film delamination,which suggests that the relaxation of the turbostratic BN(tBN)layer from the compressed condition is also hysteretic to film delamination.Moreover,cross-sectional transmission electron microscopic observations revealed that cBN film delamination is possible from near the aBN(amorphons BN)/tBN interface at least for films prepared by plasma-enhanced chemical vapour deposition.