论文部分内容阅读
利用高抗东北 SMV3号株系的大豆品系 95 - 5 383与 4个感病品种 (系 ) HB1、铁丰 2 1、Am soy、William s和抗病品种 PI486 35 5配制 5个杂交组合 ,对各组合的 F1 、F2 代接种 SMV鉴定抗性。结果表明 ,95 - 5 383与各感病品种杂交组合的 F1 代表现为感病 ,F2 群体分离比例为 3感 (花叶 +顶枯 )∶ 1抗 ,表明 95 - 5 383对 SMV3号株系的抗性受一对隐性基因控制。 95 - 5 383× PI486 35 5的 F2 代接种后有感病植株分离 ,表明二者对 SMV3的抗性基因不等位。利用BSA法对 95 - 5 383× HB1的 F2 代进行鉴定 ,筛选出 RAPD引物 OPN11在 95 - 5 383和抗池扩增出 OPN11980 片段 ,在HB1和感池扩增出 OPN111 0 70 片段 ,在 F1 同时扩增出 OPN11980 和 OPN111 0 70 。用该引物分析 95 - 5 383× HB1的 F2 个体 ,共显性的 RAPD标记 OPN11980 /1 0 70 与 95 - 5 383抗病基因的遗传距离为 2 .1c M。
A total of five hybrid combinations were prepared from soybean lines 95-5383 and four susceptible cultivars HB1, Tiefeng 2 1, Amosi, William s and disease-resistant variety PI486 35 5, respectively. F1 and F2 of each combination were inoculated with SMV to identify resistance. The results showed that the susceptible cultivar F1 was susceptible to crosses between susceptible cultivars 95-5383 and susceptible cultivar F2 (F3 / F3): 1, indicating that 95-5383 were susceptible to SMV3 The resistance is controlled by a pair of recessive genes. The susceptible plants isolated from F2 generation after inoculation with 95-5,338 × PI486 35 5 showed that the two genes were not allelic to SMV3. The F2 generation of 95 - 5 383 × HB1 was identified by BSA method. The RAPD primer OPN11 was screened for OPN11980 fragment in 95-5383 and the antisense pool, and the OPN111 070 fragment was amplified in HB1 and sense pool. OPN11980 and OPN111 070 were also amplified. The F2 individuals of 95 - 5 383 × HB1 were analyzed by this primer. The genetic distance between the dominant - negative RAPD markers OPN11980 / 1 0 70 and 95 - 5 383 was 2.1cM.