Schiff-base silver nanocomplexes formation on natural biopolymer coated mesoporous silica contribute

来源 :纳米研究(英文版) | 被引量 : 0次 | 上传用户:zyr2007
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Infectious microbes that spread easily in healthcare facilities remain as the severe threat for the public health,especially among immunocompromised populations.Given the intricate problem of dramatic increase in resistance to common biocides,the development of safe and efficient biocide formulated agents to alleviate drug resistance is highly demanding.In this study,Schiff-base ligands were successfully formed on natural biopolymer of epsilon-poly-L-lysine (ε-PL) decorated aldehyde functionalized mesoporous silica SBA-15 (CHO-SBA-15) for the selective coordination of silver ions,which was affirmed by various physicochemical methods.Besides the identified broad-spectrum antibacterial activities,the as-prepared Schiff-base silver nanocomplex (CHO-SBA-15/ε-PL/Ag,CLA-1) exhibited an improved inhibitory effect on infectious pathogen growth typified by Escherichia coli and Staphylococcus aureus in comparison with two control silver complexes without Schiff-base conjugates,SBA-15/ε-PL/Ag and CHO-SBA-15/Ag,respectively.In addition,CLA-1 remarkably inhibited the growth of Mycobacterium tuberculosis due to the excellent antimicrobial activity of silver species.Significantly,CLA-1 kills Candida albicans cells,inhibits biofilm formation,and eliminates preformed biofilms,with no development of resistance during continuous serial passaging.The antifungal activity is connected to disruption of bacterial cell membranes and increased levels of intracellular reactive oxygen species.In mouse models of multidrug-resistant C.albicans infection,CLA-1 exhibited efficient in vivo fungicidal efficacy superior to two antifungal drugs,amphotericin B and fluconazole.Moreover,CLA-1 treatment induces negligible toxicity against normal tissues with safety.Therefore,this study reveals the pivotal role of the molecular design of Schiff-base silver nanocomplex formation on biopolymer surface-functionalized silica mesopores as a green and efficient nanoplafform to tackle infectious microbes.
其他文献
Cationic azole-based metal-organic frameworks (MOFs) with remarkable stability and unique pore environment have aroused great research interests.Meanwhile,flexible MOFs which can undergo pore-structure changes upon exposure to external stimuli are ideal m
It is challenging to develop an in vitro catalytic system to conduct natural surface-confined enzymatic reactions in a stable,efficient,and spatially defined manner.Here,we report that an artificial catalyst,which composes of trypsin and a calcium ion exc
Copper-hydrides have been intensively studied for a long time due to their utilization in a variety of technologically important chemical transformations.Nevertheless,poor stability of the species severely hinders its isolation,storage and operation,which
Introducing heating function to oil sorbents opens up a new pathway to the fast cleanup of viscous crude oil spills in situ.The oil sorption speed increases with the rise of the temperature,thus oil sorbents with high heating temperature are desirable.Bes
In this study,we developed a novel confinement-synthesis approach to layered double hydroxide nanodots (LDH-NDs) anchored on carbon nanoparticles,which formed a three-dimensional (3D) interconnected network within a porous carbon support derived from pyro
Brain ischemia is the second leading cause of death and the third leading cause of disability in the world.Systemic delivery of microRNA,a class of molecules that regulate the expression of cellular proteins associated with angiogenesis,cell growth,prolif
Two-dimensional (2D) transition metal dichalcogenides (TMDs) have been rapidly established as promising building blocks for versatile atomic scale circuits and multifunctional devices.However,the high contact resistance in TMDs based transistors seriously
Fiber-shaped dye-sensitized solar cells (FDSSCs) represent promising futuristic flexible or wearable power sources,owing to their simple fabrication process,light weight,weavability,and wearability.Along with strategies on changing the properties of semic
Pulse microwave excite thermoacoustic (TA) shockwave to destroy tumor cells in situ.This has promising applications for precise tumor therapy in deep tissue.Nanoparticle (NP) with high microwave-acoustic conversion is the key to enhance the efficiency of
Levodopa (L-DOPA),a precursor of dopamine,is commonly prescribed for the treatment of the Parkinson\'s disease (PD).However,oral administration of levodopa results in a high level of homocysteine in the peripheral circulation,thereby elevating the risk