论文部分内容阅读
针对迭代傅里叶算法(IFT)在对稀疏阵列天线优化时,阵元不分区域地大规模截断带来的不利影响,介绍了一种分区IFT算法。根据满阵幅度锥削分布计算每个分区域需要的激励阵元数,在算法的截断过程中,对每个分区中按照所需的阵元数对激励幅度较大的阵元进行截断,从而使阵元的密度分布更加接近于满阵的幅度分布,更容易获得相对较低的副瓣电平。将其应用于圆形孔径平面稀疏阵列天线的优化布阵,以抑制阵列天线的峰值副瓣电平为目的,仿真试验表明分区IFT算法可以得到比标准IFT算法更优的结果。
Aiming at the unfavorable influence of iterative Fourier algorithm (IFT) on sparse array antenna optimization, the array element without large-scale truncation is introduced. A partitioned IFT algorithm is introduced. According to the distribution of full array amplitude taper distribution, the number of excitation array elements needed in each sub-area is calculated. During the truncation of the algorithm, the array elements with larger excitation amplitude are truncated according to the required number of array elements in each sub-area Make the density distribution of array elements closer to the full array amplitude distribution, and obtain the relatively lower sidelobe level more easily. This method is applied to the optimal array of circular aperture planar sparse array antennas and aims to suppress the peak sidelobe level of the array antenna. The simulation results show that the partitioned IFT algorithm can obtain better results than the standard IFT algorithm.