论文部分内容阅读
Copper (Ⅰ) nitride nanorods grown in channels of mesoporous silica SBA-15 by chemical vapor deposition method has been synthesized. The morphology and microstructure of the resulting product were characterized by XRD patters, TEM images, EDS analysis and Raman spectra. The XRD and TEM revealed that the Cu3N phase was confined in channels of SBA-15 forming continuous nanowires with 6 nm around and hundreds of nanometers in length. Raman spectra of the final product and pure Cu3N showed peaks shift due to the quantum confinement effect of the nanowires. This preparation methodology only requires a mild working condition and is capable of template synthesis of other binary nitride nanostructures with controlled morphology inside the channels of mesoporous materials.
The morphology and microstructure of the resulting product were characterized by XRD patters, TEM images, EDS analysis and Raman spectra. The XRD and TEM revealed that the Cu3N phase was confined in channels of SBA-15 forming continuous nanowires with 6 nm around and hundreds of nanometers in length. Raman spectra of the final product and pure Cu3N showed peaks shift due to the quantum confinement effect of the nanowires. This preparation methodology requires only a mild working condition and is capable of template synthesis of other binary nitride nanostructures with controlled morphology inside the channels of mesoporous materials.