论文部分内容阅读
We report on the growth of the high-quality GaN grain on a r-plane sapphire substrate by using a self-organized SiN interlayer as a selective growth mask.Transmission electron microscopy,scanning electron microscopy,and Raman spectroscopy are used to reveal the effect of SiN on the overgrown a-plane GaN growth.The SiN layer effectively terminates the propagation of the threading dislocation and basal plane stacking faults during a-plane GaN regrowth through the interlayer,resulting in the window region shrinking from a rectangle to a “black hole”.Furthermore,strong yellow luminescence(YL) in the nonpolar plane and very weak YL in the semipolar plane on the GaN grain is revealed by cathodoluminescence,suggesting that C-involved defects are responsible for the YL.
We report on the growth of the high-quality GaN grain on a r-plane sapphire substrate by using a self-organized SiN interlayer as a selective growth mask. Transmission electron microscopy, scanning electron microscopy, and Raman spectroscopy are used to reveal the effect of SiN on the overgrown a-plane GaN growth. The SiN layer effectively terminates the propagation of the threading dislocation and basal plane stacking faults during a-plane GaN regrowth through the interlayer, resulting in the window region shrinking from a rectangle to a “ black hole ”., Strong yellow luminescence (YL) in the nonpolar plane and very weak YL in the semipolar plane on the GaN grain is revealed by cathodoluminescence, suggesting that C-involved defects are responsible for the YL.