论文部分内容阅读
为减轻行人图片中的背景干扰,使网络着重于行人前景并且提高前景中人体部位的利用率,该文提出引入语义部位约束(SPC)的行人再识别网络。在训练阶段,首先将行人图片同时输入主干网络和语义部位分割网络,分别得到行人特征图和部位分割图;然后,将部位分割图与行人特征图融合,得到语义部位特征;接着,对行人特征图进行池化得到全局特征;最后,同时使用身份约束和语义部位约束训练网络。在测试阶段,由于语义部位约束使得全局特征拥有部位信息,因此测试时仅使用主干网络提取行人的全局信息即可。在大规模公开数据集上的实验结果表明,